0000000000636557

AUTHOR

Bjørn Kløve

Enhanced nitrogen removal of low carbon wastewater in denitrification bioreactors by utilizing industrial waste toward circular economy

Aquaculture needs practical solutions for nutrient removal to achieve sustainable fish production. Passive denitrifying bioreactors may provide an ecological, low-cost and low-maintenance approach for wastewater nitrogen removal. However, innovative organic materials are needed to enhance nitrate removal from the low carbon effluents in intensive recirculating aquaculture systems (RAS). In this study, we tested three additional carbon sources, including biochar, dried Sphagnum sp. moss and industrial potato residues, to enhance the performance of woodchip bioreactors treating the low carbon RAS wastewater. We assessed nitrate (NO3−) removal and microbial community composition during a one-y…

research product

Elevated nutrient concentrations in headwaters affected by drained peatland

Abstract Nutrient export from drained peatland has significant impacts on aquatic environments in Nordic catchments. Spatial information on variations in nutrient concentrations across different landscapes and land uses is needed to design measures for achieving the good ecological status of the EU Water Framework Directive. In this study we determined background concentrations in natural peatland-dominated streams and examined effects of peatland use practices on water quality in headwater catchments. We quantified sources for different elements by joint analysis of water chemistry, isotopes, and hydrology for 62 small catchments in North Ostrobothnia, Finland. Concentrations of nutrients …

research product

Changes in pore water quality after peatland restoration: Assessment of a large¿scale, replicated Before-After-Control-Impact study in Finland

Drainage is known to affect peatland natural hydrology and water quality, but peatland restoration is considered to ameliorate peatland degradation. Using a replicated BACIPS (Before-After-Control-Impact Paired Series) design, we investigated 24 peatlands, all drained for forestry and subsequently restored, and 19 pristine control boreal peatlands with high temporal and spatial resolution data on hydroclimate and pore water quality. In drained conditions, total nitrogen (Ntot), total phosphorus (Ptot), and dissolved organic carbon (DOC) in pore water were several-fold higher than observed at pristine control sites, highlighting the impacts of long-term drainage on pore water quality. In gen…

research product

Spatial and temporal variability of diatom and macroinvertebrate communities: How representative are ecological classifications within a river system?

Evaluation of river condition is complicated by dynamic relationships between river assemblages and their environment. We assessed variation of ecological status classifications of stream diatom and macroinvertebrate communities within a boreal river system. We specifically examined whether results of ecological classifications are concordant across taxonomic groups and among main channel and headwater side tributaries of this river system. We further assessed whether ecological classifications are stable from year to year and whether classifications show predictable relationships to major stressor gradients. The estimated ecological condition varied considerably among and between reaches o…

research product

Changes in Pore Water Quality After Peatland Restoration: Assessment of a Large-Scale, Replicated Before-After-Control-Impact Study in Finland

Drainage is known to affect peatland natural hydrology and water quality, but peatland restoration is considered to ameliorate peatland degradation. Using a replicated BACIPS (Before-After-Control-Impact Paired Series) design, we investigated 24 peatlands, all drained for forestry and subsequently restored, and 19 pristine control boreal peatlands with high temporal and spatial resolution data on hydroclimate and pore water quality. In drained conditions, total nitrogen (Ntot), total phosphorus (Ptot), and dissolved organic carbon (DOC) in pore water were several-fold higher than observed at pristine control sites, highlighting the impacts of long-term drainage on pore water quality. In gen…

research product

Potential impacts of a future Nordic bioeconomy on surface water quality

AbstractNordic water bodies face multiple stressors due to human activities, generating diffuse loading and climate change. The ‘green shift’ towards a bio-based economy poses new demands and increased pressure on the environment. Bioeconomy-related pressures consist primarily of more intensive land management to maximise production of biomass. These activities can add considerable nutrient and sediment loads to receiving waters, posing a threat to ecosystem services and good ecological status of surface waters. The potential threats of climate change and the ‘green shift’ highlight the need for improved understanding of catchment-scale water and element fluxes. Here, we assess possible bio…

research product

Enhanced nitrogen removal of low carbon wastewater in denitrification bioreactors by utilizing industrial waste toward circular economy

Abstract Aquaculture needs practical solutions for nutrient removal to achieve sustainable fish production. Passive denitrifying bioreactors may provide an ecological, low-cost and low-maintenance approach for wastewater nitrogen removal. However, innovative organic materials are needed to enhance nitrate removal from the low carbon effluents in intensive recirculating aquaculture systems (RAS). In this study, we tested three additional carbon sources, including biochar, dried Sphagnum sp. moss and industrial potato residues, to enhance the performance of woodchip bioreactors treating the low carbon RAS wastewater. We assessed nitrate (NO3−) removal and microbial community composition durin…

research product