0000000000636711

AUTHOR

Matt Kerr

0000-0002-0414-0073

showing 2 related works from this author

The Abel–Jacobi map for higher Chow groups

2006

We construct a map between Bloch's higher Chow groups and Deligne homology for smooth, complex quasiprojective varieties on the level of complexes. For complex projective varieties this results in a formula which generalizes at the same time the classical Griffiths Abel–Jacobi map and the Borel/Beilinson/Goncharov regulator type maps.

AlgebraDeligne cohomologyPure mathematicsMathematics::Algebraic GeometryAlgebra and Number TheoryMathematics::K-Theory and HomologyHomology (mathematics)Chow ringMathematicsCompositio Mathematica
researchProduct

Specialization of cycles and the K-theory elevator

2017

A general specialization map is constructed for higher Chow groups and used to prove a "going-up" theorem for algebraic cycles and their regulators. The results are applied to study the degeneration of the modified diagonal cycle of Gross and Schoen, and of the coordinate symbol on a genus-2 curve.

Algebra and Number TheoryElevator010102 general mathematicsGeneral Physics and AstronomyK-theory01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic Geometry14C25 19E15 14C300103 physical sciencesSpecialization (functional)FOS: Mathematics010307 mathematical physics0101 mathematicsMathematical economicsAlgebraic Geometry (math.AG)Mathematical PhysicsMathematics
researchProduct