0000000000636887
AUTHOR
Min Tang
The Aquatic Surface Robot (AnSweR), a Lightweight, Low Cost, Multipurpose Unmanned Research Vessel
Even though a few examples of aquatic surface robots exist, they are generally expensive, relatively large and heavy and tailored to custom-made hardware/software components that are not openly available to a broad public. In this work, the Aquatic Surface Robot (AnSweR), a newly-designed, lightweight, low cost, open-source, multipurpose unmanned research vessel is presented. The AnSweR features a lightweight and compact design that makes it fit in a backpack. Low-noise operation (in and above the surface) is achieved with a propulsion system based on two water-jets. Only affordable commercial-off-the-shelf (COTS) components are adopted. The primary goal of the AnSweR is to map underwater l…
Aquatic Surface Robots: the State of the Art, Challenges and Possibilities
In this paper, a survey of the state of the art, challenges, and possibilities for aquatic surface robots is presented. To this end, a survey and classification of aquatic surface robots is first outlined. Then, different levels of autonomy are identified for this typology of robots and categorised into environmental complexity, mission complexity, and external system independence. From this perspective, a step-wise approach is adopted on how to increment aquatic surface robots abilities within guidance, navigation, and control in order to target the different levels of autonomy. Possibilities and challenges for designing aquatic surface robots as carriers for conducting research activities…