0000000000636939

AUTHOR

Joakim Sandström

Selective detection of 13C by laser photodetachment mass spectrometry

Abstract In this paper, we demonstrate how laser photodetachment mass spectrometry (LPMS) can be used to selectively detect 13C− ions in the presence of 12C− ions in a low energy ion beam. An isotopically enriched beam of carbon ions consisting of equal amounts of 13C− and 12C− ions was extracted from an ion source. The ions interacted with a laser beam in a collinear geometry over a distance of 70 cm. Residual atoms produced in the photodetachment process were detected in a neutral particle detector placed downstream of the collinear interaction region. By making use of the Doppler effect we were able to selectively photodetach 13C− ions. The number of detected 13C atoms was 13 times large…

research product

Laser photodetachment mass spectrometry

We demonstrate that the technique of laser photodetachment spectroscopy on atomic negative ions can be used as a sensitivity enhancement tool in mass spectrometry, useful for suppressing both isotopic as well as molecular isobaric interferences. In the experiment a beam of negative ions and a laser beam are merged in a collinear geometry and the wavelength of the laser is tuned across the photodetachment threshold region. Due to the large differential Doppler shifts associated with the fast moving ions of different masses, it is possible to selectively detach ions of certain isotopes while leaving others unaffected. By choosing co-propagating laser and ion beams, the heavier isotopes of an …

research product