0000000000637170

AUTHOR

Philippe Loget

showing 4 related works from this author

Split hand/foot malformation with long-bone deficiency andBHLHA9duplication: report of 13 new families

2013

Split hand/foot malformation (SHFM) with long-bone deficiency (SHFLD, MIM#119100) is a rare condition characterized by SHFM associated with long-bone malformation usually involving the tibia. Previous published data reported several unrelated patients with 17p13.3 duplication and SHFLD. Recently, the minimal critical region had been reduced, suggesting that BHLHA9 copy number gains are associated with this limb defect. Here, we report on 13 new families presenting with ectrodactyly and harboring a BHLHA9 duplication.

Ectrodactylybusiness.industryFoot malformationLong boneAnatomymedicine.diseaseSplit-Hand/Foot Malformationmedicine.anatomical_structureGene duplicationGeneticsmedicineTibiabusinessGenetics (clinical)Clinical Genetics
researchProduct

Genotype-first in a cohort of 95 fetuses with multiple congenital abnormalities: when exome sequencing reveals unexpected fetal phenotype-genotype co…

2020

PurposeMolecular diagnosis based on singleton exome sequencing (sES) is particularly challenging in fetuses with multiple congenital abnormalities (MCA). Indeed, some studies reveal a diagnostic yield of about 20%, far lower than in live birth individuals showing developmental abnormalities (30%), suggesting that standard analyses, based on the correlation between clinical hallmarks described in postnatal syndromic presentations and genotype, may underestimate the impact of the genetic variants identified in fetal analyses.MethodsWe performed sES in 95 fetuses with MCA. Blind to phenotype, we applied a genotype-first approach consisting of combined analyses based on variants annotation and …

Candidate genemedicine.medical_specialtyGenotype[SDV]Life Sciences [q-bio]BiologyCongenital AbnormalitiesCohort Studiescomplex traits03 medical and health sciencesFetusMolecular geneticsGenotypemedicineHumansAbnormalities MultipleExomeClinical significancegeneticsGeneGenetic Association StudiesGenetics (clinical)Exome sequencing030304 developmental biologyGenetics0303 health sciencesFetus030305 genetics & hereditySequence Analysis DNAPhenotype[SDV] Life Sciences [q-bio]molecular geneticsreproductive medicine
researchProduct

The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation

2014

Centrioles are microtubule-based, barrel-shaped structures that initiate the assembly of centrosomes and cilia(1,2). How centriole length is precisely set remains elusive. The microcephaly protein CPAP (also known as MCPH6) promotes procentriole growth(3-5), whereas the oral-facial-digital (OFD) syndrome protein OFD1 represses centriole elongation(6,7). Here we uncover a new subtype of OFD with severe microcephaly and cerebral malformations and identify distinct mutations in two affected families in the evolutionarily conserved C2CD3 gene. Concordant with the clinical overlap, C2CD3 colocalizes with OFD1 at the distal end of centrioles, and C2CD3 physically associates with OFD1. However, wh…

MaleMicrocephalyCentrioleMicrotubule-associated proteinsportsBiologyCiliopathiesCentriole elongationArticleCell LineProcentrioleGeneticsmedicineHumansGenetic Predisposition to DiseaseCentriolesGeneticsCiliumProteinsOrofaciodigital Syndromesmedicine.diseasesports.leagueHEK293 CellsCentrosomeChild PreschoolMicrocephalyMicrotubule-Associated Proteins
researchProduct

Fifteen years of research on oral-facial-digital syndromes: from 1 to 16 causal genes

2017

Oral–facial–digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in theOFD1gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and …

Male0301 basic medicineHeterozygoteciliopathieOral facial digital[SDV]Life Sciences [q-bio][ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyBiologyCiliopathiesCentriole elongation03 medical and health sciencesIntraflagellar transportGenotypeGeneticsPolycystic kidney diseasemedicineHumansAbnormalities Multiple[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyFunctional studies[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyGene*oral-facial-digital syndromesGenetics (clinical)ComputingMilieux_MISCELLANEOUSEncephaloceleGeneticsPolycystic Kidney Diseases[ SDV ] Life Sciences [q-bio]*ciliopathiesProteinsMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6][SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyOrofaciodigital Syndromesmedicine.disease030104 developmental biologyFaceMutationciliopathiesoral-facial-digital syndromesFemaleRetinitis PigmentosaRare cancers Radboud Institute for Health Sciences [Radboudumc 9]Ciliary Motility Disorders
researchProduct