Dark energy cosmologies for codimension-two branes
A six-dimensional universe with two branes in the "football-shaped" geometry leads to an almost realistic cosmology. We describe a family of exact solutions with time dependent characteristic size of internal space. After a short inflationary period the late cosmology is either of quintessence type or turns to a radiation dominated Friedmann universe where the cosmological constant appears as a free integration constant of the solution. The radiation dominated universe with relativistic fermions is analyzed in detail, including its dimensional reduction.
The cosmological constant problem in codimension-two brane models
We discuss the possibility of a dynamical solution to the cosmological constant problem in the contaxt of six-dimensional Einstein-Maxwell theory. A definite answer requires an understanding of the full bulk cosmology in the early universe, in which the bulk has time-dependent size and shape. We comment on the special properties of codimension two as compared to higher codimensions.
Cosmon Lumps and Horizonless Black Holes
We investigate non-linear, spherically symmetric solutions to the coupled system of a quintessence field and Einstein gravity. In the presence of a scalar potential, we find regular solutions that to an outside observer very closely resemble Schwarzschild black holes. However, these cosmon lumps have neither a horizon nor a central singularity. A stability analysis reveals that our static solutions are dynamically unstable. It remains an open question whether analogous stable solutions exist.