0000000000637625

AUTHOR

Stefano Caschera

Estimating brain connectivity when few data points are available: Perspectives and limitations

Methods based on the use of multivariate autoregressive modeling (MVAR) have proved to be an accurate and flexible tool for the estimation of brain functional connectivity. The multivariate approach, however, implies the use of a model whose complexity (in terms of number of parameters) increases quadratically with the number of signals included in the problem. This can often lead to an underdetermined problem and to the condition of multicollinearity. The aim of this paper is to introduce and test an approach based on Ridge Regression combined with a modified version of the statistics usually adopted for these methods, to broaden the estimation of brain connectivity to those conditions in …

research product

Measuring the agreement between brain connectivity networks.

Investigating the level of similarity between two brain networks, resulting from measures of effective connectivity in the brain, can be of interest from many respects. In this study, we propose and test the idea to borrow measures of association used in machine learning to provide a measure of similarity between the structure of (un-weighted) brain connectivity networks. The measures here explored are the accuracy, Cohen's Kappa (K) and Area Under Curve (AUC). We implemented two simulation studies, reproducing two contexts of application that can be particularly interesting for practical applications, namely: i) in methodological studies, performed on surrogate data, aiming at comparing th…

research product