0000000000637866
AUTHOR
Arsen Soukiassian
Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy
We demonstrated that ultraviolet Raman spectroscopy is an effective technique to measure the transition temperature ( T c ) in ferroelectric ultrathin films and superlattices. We showed that one-unit-cell-thick BaTiO 3 layers in BaTiO 3 /SrTiO 3 superlattices are not only ferroelectric (with T c as high as 250 kelvin) but also polarize the quantum paraelectric SrTiO 3 layers adjacent to them. T c was tuned by ∼500 kelvin by varying the thicknesses of the BaTiO 3 and SrTiO 3 layers, revealing the essential roles of electrical and mechanical boundary conditions for nanoscale ferroelectricity.
Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy
We study high quality molecular-beam epitaxy grown BaTiO3/SrTiO3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO3/SrTiO3 layer thicknesses the effective sound velocities within each of the layers are obtained.