0000000000637891

AUTHOR

Jennifer Baraka-vidot

Deciphering metal-induced oxidative damages on glycated albumin structure and function

Background: Metal ions such as copper or zinc are involved in the development of neurodegenerative pathologies and metabolic diseases such as diabetes mellitus. Albumin structure and functions are impaired following metal-and glucose-mediated oxidative alterations. The aim of this study was to elucidate effects of Cu(II) and Zn(II) ions on glucose-induced modifications in albumin by focusing on glycation, aggregation, oxidation and functional aspects. Methods: Aggregation and conformational changes in albumin were monitored by spectroscopy, fluorescence and microscopy techniques. Biochemical assays such as carbonyl, thiol groups, albumin-bound Cu, fructosamine and amine group measurements w…

research product

Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin.

Albumin, the major circulating protein in blood plasma, can be subjected to an increased level of glycation in a diabetic context. Albumin exerts crucial pharmacological activities through its drug binding capacity, i.e., ketoprofen, and via its esterase-like activity, allowing the conversion of prodrugs into active drugs. In this study, the impact of the glucose-mediated glycation on the pharmacological and biochemical properties of human albumin was investigated. Aggregation product levels and the redox state were quantified to assess the impact of glycation-mediated changes on the structural properties of albumin. Glucose-mediated changes in ketoprofen binding properties and esterase-lik…

research product