Fatigue-related changes in technique emerge at different timescales during repetitive training
Training consisting of numerous repetitions performed as closely as possible to ideal techniques is common in sports and every-day tasks. Little is known about fatigue-related technique changes that emerge at different timescales when repeating complex actions such as a karate front kick. Accordingly, 15 karatekas performed 600 kicks (1 pre-block and 9 blocks). The pre-block comprised 6 kicks (3 with each leg) at maximum intensity (K-100%). Each block comprised 60 kicks (10 with each leg) at 80% of their self-perceived maximum intensity (K-80%) plus 6 K-100%. In between blocks, the participants rested for 90 seconds. Right leg kinematics (peak joint angles, peak joint angular velocities, pe…
Fatigue-Related and Timescale-Dependent Changes in Individual Movement Patterns Identified Using Support Vector Machine
The scientific and practical fields—especially high-performance sports—increasingly request a stronger focus be placed on individual athletes in human movement science research. Machine learning methods have shown efficacy in this context by identifying the unique movement patterns of individuals and distinguishing their intra-individual changes over time. The objective of this investigation is to analyze biomechanically described movement patterns during the fatigue-related accumulation process within a single training session of a high number of repeated executions of a ballistic sports movement—specifically, the frontal foot kick (mae-geri) in karate—in expert athletes. The two leading r…
Cardiorespiratory Coordination after Training and Detraining. A Principal Component Analysis Approach
Our purpose was to study the effects of different training modalities and detraining on cardiorespiratory coordination (CRC). Thirty-two young males were randomly assigned to four training groups: aerobic (AT), resistance (RT), aerobic plus resistance (AT + RT), and control (C). They were assessed before training, after training (6 weeks) and after detraining (3 weeks) by means of a graded maximal test. A principal component (PC) analysis of selected cardiovascular and cardiorespiratory variables was performed to evaluate CRC. The first PC (PC1) coefficient of congruence in the three conditions (before training, after training and after detraining) was compared between groups. Two PCs were …