0000000000639449

AUTHOR

Yu-ping Wang

0000-0001-9340-5864

Shift-Invariant Canonical Polyadic Decomposition of Complex-Valued Multi-Subject fMRI Data with a Phase Sparsity Constraint

Canonical polyadic decomposition (CPD) of multi-subject complex-valued fMRI data can be used to provide spatially and temporally shared components among groups with both magnitude and phase information. However, the CPD model is not well formulated due to the large subject variability in the spatial and temporal modalities, as well as the high noise level in complex-valued fMRI data. Considering that the shift-invariant CPD can model temporal variability across subjects, we propose to further impose a phase sparsity constraint on the shared spatial maps to denoise the complex-valued components and to model the inter-subject spatial variability as well. More precisely, subject-specific time …

research product

Spatial source phase : A new feature for identifying spatial differences based on complex-valued resting-state fMRI data

Spatial source phase, the phase information of spatial maps extracted from functional magnetic resonance imaging (fMRI) data by data‐driven methods such as independent component analysis (ICA), has rarely been studied. While the observed phase has been shown to convey unique brain information, the role of spatial source phase in representing the intrinsic activity of the brain is yet not clear. This study explores the spatial source phase for identifying spatial differences between patients with schizophrenia (SZs) and healthy controls (HCs) using complex‐valued resting‐state fMRI data from 82 individuals. ICA is first applied to preprocess fMRI data, and post‐ICA phase de‐ambiguity and den…

research product

Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition with Spatial Sparsity Constraint

Tucker decomposition can provide an intuitive summary to understand brain function by decomposing multi-subject fMRI data into a core tensor and multiple factor matrices, and was mostly used to extract functional connectivity patterns across time/subjects using orthogonality constraints. However, these algorithms are unsuitable for extracting common spatial and temporal patterns across subjects due to distinct characteristics such as high-level noise. Motivated by a successful application of Tucker decomposition to image denoising and the intrinsic sparsity of spatial activations in fMRI, we propose a low-rank Tucker-2 model with spatial sparsity constraint to analyze multi-subject fMRI dat…

research product