0000000000639485
AUTHOR
Clément Gombeaud
Does interferometry probe thermalization?
We carry out a systematic study of interferometry radii in ultrarelativistic heavy-ion collisions within a two-dimensional transport model. We compute the transverse radii R_o and R_s as a function of p_t for various values of the Knudsen number, which measures the degree of thermalization in the system. They converge to the hydrodynamical limit much more slowly (by a factor 3) than elliptic flow. This solves most of the HBT puzzle for central collisions: R_o/R_s is in the range 1.1-1.2 for realistic values of the Knudsen number, much closer to experimental data ($\simeq 1$) than the value 1.5 from hydrodynamical calculations. The p_t dependence of R_o and R_s, which is usually said to refl…
Effects of partial thermalization on HBT interferometry
Hydrodynamical models have generally failed to describe interferometry radii measured at RHIC. In order to investigate this ``HBT puzzle'', we carry out a systematic study of HBT radii in ultrarelativistic heavy-ion collisions within a two-dimensional transport model. We compute the transverse radii $R_o$ and $R_s$ as functions of $p_t$ for various values of the Knudsen number, which measures the degree of thermalization in the system. For realistic values of the Knudsen number estimated from $v_2$ data, we obtain $R_o/R_s \simeq 1.2$, much closer to data than standard hydrodynamical results. Femtoscopic observables vary little with the degree of thermalization. Azimuthal oscillations of th…