0000000000640156

AUTHOR

W. Oberschulte-beckmann

showing 32 related works from this author

Identified particles in quark and gluon jets

1997

A sample of about 1.4 million hadronic Z decays, selected among the data recorded by the DELPHI detector at LEP during 1994, was used to measure for the first time the momentum spectra of K+, K-0, p, Lambda and their antiparticles in gluon and quark jets. As observed for inclusive charged particles, the production spectra of identified particles were found to be softer in gluon jets than in quark jets, with a higher total multiplicity. (C) 1997 Published by Elsevier Science B.V.

QuarkNuclear and High Energy PhysicsParticle physicsAntiparticleElectron–positron annihilationAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::LatticeHadronNuclear Theory01 natural sciencesPartícules (Física nuclear)Nuclear physicsPHYSICSMONTE-CARLO0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsDetectors de radiacióDELPHIQuantum chromodynamicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAVERAGE MULTIPLICITIES; MONTE-CARLO; QCD; PHYSICSQCDLARGE ELECTRON POSITRON COLLIDERPhoton structure functionCharged particleGluonPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentParticle Physics - ExperimentAVERAGE MULTIPLICITIES
researchProduct

Updated precision measurement of the average lifetime of B hadrons

1996

The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.}

Nuclear and High Energy PhysicsParticle physicsElectron–positron annihilationHadron01 natural sciencesb taggingPartícules (Física nuclear)030218 nuclear medicine & medical imagingNuclear physics03 medical and health sciencesinclusive reconstruction0302 clinical medicine0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentDELPHIPhysics010308 nuclear & particles physicsLARGE ELECTRON POSITRON COLLIDERCharged particleB hadrons lifetimeDELPHI; B hadrons lifetime; inclusive reconstruction; b taggingPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentFísica nuclearAstrophysics::Earth and Planetary AstrophysicsImpact parameterParticle Physics - Experiment
researchProduct

Search for neutral heavy leptons produced in Z decays

1997

Weak isosinglet Neutral Heavy Leptons ($\nu_m$) have been searched for using data collected by the DELPHI detector corresponding to $3.3\times 10^{6}$ hadronic~Z$^{0}$ decays at LEP1. Four separate searches have been performed, for short-lived $\nu_m$ production giving monojet or acollinear jet topologies, and for long-lived $\nu_m$ giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio $BR($Z$^0\rightarrow \nu_m \overline{\nu})$ of about $1.3\times10^{-6}$ at 95\% confidence level for $\nu_m$ masses between 3.5 and 50 GeV/$c^2$. Outside this range the limit weakens rap…

COLLISIONSParticle physicsE+E ANNIHILATIONPhysics and Astronomy (miscellaneous)Electron–positron annihilationHadronMASSJet (particle physics)HIGH-ENERGY-PHYSICS; MONOJET PRODUCTION; E+E ANNIHILATION; MONTE-CARLO; BOSON; LIMITS; MASS; LEP; PERFORMANCE; COLLISIONSHIGH-ENERGY-PHYSICS01 natural sciences7. Clean energyMONOJET PRODUCTIONNuclear physicsLIMITSMONTE-CARLO0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsDELPHIBosonPhysics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyBOSONLEPPERFORMANCELARGE ELECTRON POSITRON COLLIDERPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderPARTICLE PHYSICSHigh Energy Physics::ExperimentNeutrinoParticle Physics - ExperimentLepton
researchProduct

Rapidity correlations in Lambda baryon and proton production in hadronic Z0 decays

1998

In an analysis of multihadronic events recorded at LEP by DELPHI in the years 1992 through 1994, charged hadrons are identified using the measurement of their energy loss and their Cherenkov angle. Rapidity correlations of \La-\La, proton-proton, and \La-proton pairs are compared. The agreement with the string and cluster fragmentation models is tested. For those pairs that frame a meson in terms of rapidity the compensation of strangeness is studied. For \La{}$\overline{\mathrm{p}}$ pairs the additional correlation with respect to charged kaons is analysed.

IMAGING CHERENKOV DETECTOR; DELPHIParticle physicsNuclear and High Energy PhysicsMesonElectron–positron annihilationHadronNuclear TheoryStrangenessLambdaLambda baryon01 natural sciencesPartícules (Física nuclear)Nuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Rapidity010306 general physicsNuclear ExperimentDELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERIMAGING CHERENKOV DETECTORLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Measurement of trilinear gauge couplings in e(+)e(-) collisions at 161 GeV and 172 GeV

1998

Trilinear gauge boson couplings are measured using data taken by DELPHI at 161 GeV and 172 GeV, Values for WWV couplings (V = Z,gamma) are determined from a study of the reactions e(+)e(-) --> W+W- and e(+)e(-) --> We nu, using differential distributions from the WW final state in which one W decays hadronically and the other leptonically, and total cross,section data from other channels, Limits are also derived on neutral ZV gamma couplings from an analysis of the reaction e(+)e(-) --> gamma + invisible particles. (C) 1998 Elsevier Science B.V.

Particle physicsNuclear and High Energy PhysicsElectron–positron annihilation7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesOPTIMAL OBSERVABLES[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentOPTIMAL OBSERVABLES; PHOTON COUPLINGS; ROOT-S=1.8 TEVDELPHIPhysicsGauge boson010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyROOT-S=1.8 TEVGauge (firearms)LARGE ELECTRON POSITRON COLLIDERPHOTON COUPLINGSLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Performance of the DELPHI detector

1996

DELPHI (DEtector with Lepton, Photon and Hadron Identification) is a detector for e(+)e(-) physics, designed to provide high granularity over a 4 pi solid angle, allowing an effective particle identification, It has been operating at the LEP (Large Electron-Positron) collider at CERN since 1989. This article reviews its performance.

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsENERGIESHadronDENSITY PROJECTION CHAMBER; IMAGING CHERENKOV DETECTOR; RADIATIVE-CORRECTIONS; LEP; SIMULATION; ENERGIES; Z(0); SCATTERING; PROGRAM; SYSTEM01 natural sciencesPartícules (Física nuclear)Particle identificationlaw.inventionNuclear physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PROGRAMRADIATIVE-CORRECTIONSSCATTERINGDetectors and Experimental Techniques010306 general physicsColliderInstrumentationDELPHINuclear and High Energy PhysicPhysicsLarge Hadron Colliderhigh granularityCalorimeter (particle physics)LEP; DELPHI; high granularity; particle identification010308 nuclear & particles physicsDetectorHigh Energy Physics::PhenomenologyLEPZ(0)LARGE ELECTRON POSITRON COLLIDERIMAGING CHERENKOV DETECTORFIS/01 - FISICA SPERIMENTALEPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderSIMULATIONPARTICLE PHYSICSPhysics::Accelerator PhysicsFísica nuclearHigh Energy Physics::ExperimentDENSITY PROJECTION CHAMBERparticle identificationSYSTEMLepton
researchProduct

Observation of orbitally excited B mesons

1995

Experimental evidence for the existence of orbitally excited B meson states is presented in an analysis of the Bπ and B*π distribution of Q = m(B**) - m(B(*)) - m(π) using Z0decay data taken with the DELPHI detector at LEP. The mean Q-value of the decays B**→ B(*)π is measured to be 284 ± 5 (stat.) ± 15 (syst.) MeV/c2, and the Gaussian width of the signal is 79 ± 5 (stat.) ± 8 (syst.) MeV/c2. This signal can be described as a single resonance of mass m = 5732 ± 5 (stat.) ± 20 (syst.) MeV/c2and full width Γ = 145 ± 28 MeV/c2. The observed shape is also consistent with the production of several broad and narrow states as predicted by the quark model and partly observed in the D-…

Nuclear and High Energy PhysicsE+E ANNIHILATIONLUND MONTE-CARLOElectron–positron annihilationDELPHI; B meson; fragmentation; b-jetB meson01 natural sciencesResonance (particle physics)Full widthPartícules (Física nuclear)JET FRAGMENTATIONDECAYSNuclear physicsPHYSICSfragmentation0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]B meson010306 general physicsNuclear ExperimentDetectors de radiacióDELPHIPhysics010308 nuclear & particles physicsQuark modelb-jetLARGE ELECTRON POSITRON COLLIDERExcited statePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentLUND MONTE-CARLO; JET FRAGMENTATION; E+E ANNIHILATION; DECAYS; PHYSICSParticle Physics - ExperimentProduction ratePhysics Letters B
researchProduct

FIRST MEASUREMENT OF THE STRANGE QUARK ASYMMETRY AT THE Z(0) PEAK

1995

A measurement of the strange quark forward-backward asymmetry at the Z0 peak was performed using 718,000 multihadronic Z0 decays collected by the DELPHI detector at LEP in 1992. The s-quark was tagged by the presence of high momentum charged kaons identified by the Ring Imaging Cherenkov detector and by Λ0;s decaying into pπ-. The s-quark purity obtained was estimated for the two hadrons to be 43%. The average s-quark asymmetry was found to be 0.131±0.035 (stat.) ±0.013 (syst.). The forward-backward asymmetry was measured for unresolved d-and s-quarks, tagged by the detection of a high energy neutron or neutral kaon in the Hadron Calorimeter. The combined d-and s-quark purity was 69% and th…

Strange quarkParticle physicsPhysics and Astronomy (miscellaneous)s-quarkLUND MONTE-CARLOHigh Energy Physics::LatticeElectron–positron annihilationmedia_common.quotation_subjectHadronNuclear TheoryLUND MONTE-CARLO; CHARGE ASYMMETRY; HADRONIC DECAYS; Z0; ANNIHILATION; EVENTS; JETSLambda01 natural sciencesAsymmetryRing-imaging Cherenkov detectorPartícules (Física nuclear)EVENTSNuclear physics0103 physical sciencesDELPHI; asymmetry; Z0 resonance; s-quark[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronZ0ANNIHILATION010306 general physicsNuclear ExperimentCHARGE ASYMMETRYEngineering (miscellaneous)DELPHImedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyWeinberg angleLARGE ELECTRON POSITRON COLLIDERZ0 resonancePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIJETSPARTICLE PHYSICSHigh Energy Physics::ExperimentCol·lisionadors d'hadronsHADRONIC DECAYSasymmetryParticle Physics - Experiment
researchProduct

Tuning and test of fragmentation models based on identified particles and precision event shape data

1996

Event shape and charged particle inclusive distributions are measured using 750000 decays of the $Z$ to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.

Particle physicsPhysics and Astronomy (miscellaneous)Electron–positron annihilationHadron01 natural sciencesPartícules (Física nuclear)CROSS-SECTIONSNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BARYON PRODUCTIONMatrix element010306 general physicsParton showerPRODUCTION-RATESDELPHIELECTRON-POSITRON ANNIHILATIONQuantum chromodynamicsPhysicsQUANTUM CHROMODYNAMICS010308 nuclear & particles physicsDetectorHigh Energy Physics::PhenomenologyE+E-ANNIHILATIONLARGE ELECTRON POSITRON COLLIDERCharged particleFREE PERTURBATION-THEORYHadronizationELECTRON-POSITRON ANNIHILATION; FREE PERTURBATION-THEORY; HADRONIC Z(0) DECAYS; E+E-ANNIHILATION; QUANTUM CHROMODYNAMICS; ENERGY CORRELATIONS; BARYON PRODUCTION; PRODUCTION-RATES; CROSS-SECTIONS; NEUTRAL KAONSHADRONIC Z(0) DECAYSENERGY CORRELATIONSPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentNEUTRAL KAONSParticle Physics - Experiment
researchProduct

Measurement and interpretation of the $W$-pair cross-section in $e^+e^-$ interactions at 161 GeV

1997

In 1996 LEP ran at a centre-of-mass energy of 161~GeV, just above the threshold of W-pair production. DELPHI accumulated data corresponding to an integrated luminosity of $9.93 {\mathrm{~pb^{-1}}}$, and observed 29 events that are considered as candidates for W-pair production. From these, a cross-section for the doubly resonant $e^+e^-\to\mathrm{WW}$ process of $3.67~^{+0.97}_{-0.85} \pm 0.19{\mathrm{~pb}}$ has been measured. Within the Standard Model, this cross-section corresponds to a mass of the W-boson of ${\mathrm{80.40~\pm~0.44~(stat.)~\pm~0.09~(syst.) ~\pm 0.03~(LEP)~GeV}}/c^2$. Alternatively, if $m_{\mathrm{W}}$ is held fixed at its current value determined by other experiments, t…

COLLISIONSNuclear and High Energy PhysicsParticle physicsElectron–positron annihilation01 natural sciencesBOSON MASS; ROOT-S=1.8 TEV; COLLISIONS; COUPLINGSPartícules (Física nuclear)Standard ModelInterpretation (model theory)Nuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsDetectors de radiacióDELPHIPhysicsLuminosity (scattering theory)010308 nuclear & particles physicsROOT-S=1.8 TEVCOUPLINGSLARGE ELECTRON POSITRON COLLIDERBOSON MASSCross section (geometry)PARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentParticle Physics - ExperimentPhysics Letters B
researchProduct

Measurements of the tau polarisation in Z0 decays

1995

A sample of Z0→τ+τ- events observed in the DELPHI detector at LEP in 1991 and 1992 is analysed to measure the τ polarisation in the exclusive decay channels {Mathematical expression}, {Mathematical expression}, πν, ρν and a1ν. The τ polarisation is also measured with an inclusive hadronic analysis which benefits from a higher efficiency and a better systematic precision than the use of the exclusive decay modes. The results have been combined with those published on the 1990 data. A measurement of the τ polarisation as a function of production angle yields the values for the mean τ polarisation 〈P〉τ=-0.148±0.022 and for the Z0 polarisation PZ=-0.136±0.027. These results are used to determin…

Particle physicsPOLARIZATIONPhysics and Astronomy (miscellaneous)LUND MONTE-CARLOElectron–positron annihilationHadronLEP-SLC ENERGIESElectron01 natural sciencesPartícules (Física nuclear)JET FRAGMENTATIONPARAMETERSNuclear physicsPHYSICSBHABHA SCATTERINGZ-RESONANCE0103 physical sciencesradiative correction[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONS010306 general physicsEngineering (miscellaneous)Detectors de radiacióBhabha scatteringDELPHIPhysics010308 nuclear & particles physicsDetectortau polarizationPolarization (waves)LARGE ELECTRON POSITRON COLLIDERUniversality (dynamical systems)Z resonanceLUND MONTE-CARLO; LEP-SLC ENERGIES; RADIATIVE-CORRECTIONS; BHABHA SCATTERING; JET FRAGMENTATION; Z-RESONANCE; POLARIZATION; PHYSICS; SIMULATION; PARAMETERSSIMULATIONPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentDELPHI; tau polarization; radiative correction; Z resonanceParticle Physics - ExperimentLepton
researchProduct

Search for exclusive charmless b meson decays with the Delphi detector at Lep

1995

Charmless hadronic decays of beauty mesons have been searched for using the data collected with the DELPHI detector at the LEP collider. Several two, three and four-body decay modes have been investigated. Particle identification was used to distinguish the final states with protons, kaons and pions. Three candidate events selected in two-body decay modes are interpreted as evidence for charmless B decays. No excess has been found in higher multiplicity modes and improved upper limits for some of the branching ratios are given. © 1995.

Nuclear and High Energy PhysicsParticle physicsMesonElectron–positron annihilationNuclear TheoryHadronbeauty mesons01 natural sciencesPartícules (Física nuclear)Particle identificationNuclear physicsPion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]charmless decaysB mesonNuclear Experiment010306 general physicsDELPHIPhysics010308 nuclear & particles physicsDetectorLEPLARGE ELECTRON POSITRON COLLIDERPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderLEP; DELPHI; beauty mesons; charmless decaysPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Measurement of the inclusive charmless and double-charm B branching ratios

1998

The DELPHI experiment at LEP has measured the inclusive charmless B hadron decay branching ratio, the B branching ratio into two charmed particles, and the total number of charmed particles per B decay, using the hadronic Z data taken between 1992 and 1995. The results are extracted from a fit to the b-tagging probability distribution based on the precise impact parameter measurements made using the microvertex detector. The inclusive charmless B branching ratio, including B decays into hidden charm (c (c) over bar), is measured to be 0.033 +/- 0.021. The B branching ratio into two open charmed particles is 0.136 +/- 0.042. The mean number of charmed particles per B decay (including hidden …

Nuclear and High Energy PhysicsParticle physicsHadronBranching (polymer chemistry)01 natural sciencesPartícules (Física nuclear)Nuclear physicsPHYSICS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsDELPHIPhysics010308 nuclear & particles physicsBranching fractionDELPHI DETECTORMICROVERTEX DETECTORLARGE ELECTRON POSITRON COLLIDERLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearImpact parameterDECAYParticle Physics - ExperimentDELPHI DETECTOR; MICROVERTEX DETECTOR; DECAY; PHYSICS
researchProduct

First evidence for a charm radial excitation, D

1998

Using D*+ mesons exclusively reconstructed in the DELPHI detector at LEP, an excess of 66 +/- 14(stat.) events is observed in the D(*+)pi(+)pi(-) final state with a mass of 2637 +/- 2(stat.) +/- 6(syst.) MeV/c(2) and a full width smaller than 15 MeV/c(2) (95% C.L.). This signal is compatible with the expected decay of a radially excited D*' (J(P) = 1(-))meson. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

Nuclear and High Energy PhysicsParticle physicsMesonLUND MONTE-CARLOSYMMETRYElectron–positron annihilationNuclear TheoryHEAVY-QUARK01 natural sciencesJET FRAGMENTATIONPartícules (Física nuclear)Full widthNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Charm (quantum number)Nuclear Experiment010306 general physicsSpectroscopyPRODUCTION-RATESDELPHIPhysicsSPECTROSCOPYE+E-PHYSICS010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDELPHI DETECTORLARGE ELECTRON POSITRON COLLIDERMESONSLUND MONTE-CARLO; HEAVY-QUARK; JET FRAGMENTATION; PRODUCTION-RATES; DELPHI DETECTOR; E+E-PHYSICS; MESONS; SPECTROSCOPY; SYMMETRY; LIGHTLIGHTExcited statePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentExcitation
researchProduct

Search for neutral and charged Higgs bosons in $e^+ e^-$ collisions at $\sqrt{s}$= 161 GeV and 172 GeV

1998

A search for neutral and charged Higgs bosons has been performed in the data collected by the {\sc DELPHI} detector at centre-of-mass energies of 161~GeV and 172~GeV. The analysis assumes either the pair-production of charged Higgs bosons, ${\mathrm H}^{\pm}$, or the production of the lightest neutral Higgs boson, h, with either a Z or a neutral pseudoscalar Higgs boson, A. All final state topologies expected from the decay of h and A %neutral Higgs particles into hadrons or a pair of $\tau$ leptons, and from the decay of ${\mathrm H}^{\pm}$ %charged Higgs bosons into a pair of quarks or a $\tau \nu_{\tau}$ pair have been considered. %In the case of the associated production with a Z boson,…

QuarkParticle physicsPhysics and Astronomy (miscellaneous)LOWEST ORDER CALCULATIONSElectron–positron annihilationHigh Energy Physics::LatticeHadronMONTE-CARLO SIMULATIONSTANDARD MODEL2-PHOTON PROCESSES01 natural sciencesPartícules (Física nuclear)Nuclear physicsPHYSICS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSNuclear Experiment010306 general physicsEngineering (miscellaneous)SUPERSYMMETRYDELPHIBosonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySupersymmetryE+E-ANNIHILATIONLARGE ELECTRON POSITRON COLLIDERMONTE-CARLO SIMULATION; LOWEST ORDER CALCULATIONS; E+E-ANNIHILATION; RADIATIVE-CORRECTIONS; 2-PHOTON PROCESSES; STANDARD MODEL; Z(0) DECAYS; PHYSICS; SUPERSYMMETRYZ(0) DECAYSPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderHiggs bosonPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentLepton
researchProduct

Search for promptly produced heavy quarkonium states in hadronic Z decays

1996

A search has been made for direct production of heavy quarkonium states in more than 3 million hadronic Z^{0} decays in the 1991-1994 DELPHI data. Prompt J/\psi, \psi(2S) and \Upsilon candidates have been searched for through their leptonic decay modes using criteria based on the kinematics and decay vertex positions. New upper limits are set at the 90 \% confidence level for {Br( Z^0 \rightarrow \left( Q \bar{Q} \right) X ) / Br( Z^0 \rightarrow \mbox{hadrons})} for various strong production mechanisms of J/\psi and \Upsilon; these range down to 0.9 \times 10^{-4}. The limits are set in the presence of a small excess (\sim 1 \% statistical probability of a background fluctuation) in the su…

Systematic errorParticle physicsE+E ANNIHILATIONPhysics and Astronomy (miscellaneous)LUND MONTE-CARLOquarkonium stateHadron01 natural sciencesPartícules (Física nuclear)JET FRAGMENTATIONPHYSICSDirect production0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsLUND MONTE-CARLO; JET FRAGMENTATION; E+E ANNIHILATION; PHYSICSDELPHIPhysics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyQuarkoniumLARGE ELECTRON POSITRON COLLIDERDELPHI; quarkonium state; branching ratioVertex (geometry)PARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderDecay lengthPARTICLE PHYSICSFísica nuclearHigh Energy Physics::Experimentbranching ratioParticle Physics - Experiment
researchProduct

Measurement of trilinear gauge boson couplings WWV, (V Z,gamma) in e(+)e(-) collisions at 189 GeV

2001

Measurements of the trilinear gauge boson couplings WWgamma and WWZ are presented using the data taken by DELPHI in 1998 at a centre-of-mass energy of 189 GeV and combined with DELPHI data at 183 GeV. Values are determined for Delta(g_1^Z) and Delta(kappa_gamma), the differences of the WWZ charge coupling and of the WWgamma dipole coupling from their Standard Model values, and for lambda_gamma, the WWgamma quadrupole coupling. A measurement of the magnetic dipole and electric quadrupole moment of the W is extracted from the results for Delta(kappa_gamma) and lambda_gamma. The study uses data from the final states jjlv, jjjj, lX, jjX and gammaX, where j represents a quark jet, l an identifie…

QuarkNuclear and High Energy PhysicsParticle physicsENERGIESAstrophysics::High Energy Astrophysical Phenomenastandard modelLEP-IIFOS: Physical sciencesLambda7. Clean energy01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentStandard ModelEVENTSHigh Energy Physics - Experiment (hep-ex)BHABHA SCATTERINGMONTE-CARLO0103 physical sciencesOPTIMAL OBSERVABLES[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]W-MASSgauge couplings010306 general physicsDETECTORQCDELPHIPhysicsGauge boson010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCharge (physics)LARGE ELECTRON POSITRON COLLIDERFIS/01 - FISICA SPERIMENTALECol·lisions (Física nuclear)QuadrupolePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIOPTIMAL OBSERVABLES; BHABHA SCATTERING; MONTE-CARLO; W-MASS; LEP-II; EVENTS; DETECTOR; DELPHI; E+E-->W+W; ENERGIESelectron-positron collisionPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentE+E-->W+WMagnetic dipoleLepton
researchProduct

A Precise Measurement of the Tau Lepton Lifetime

1996

The tau lepton lifetime has been measured using three different methods with the DELPHI detector. Two measurements of one-prong decays are combined, accounting for correlations, giving a result of \tau_\tau = 291.8 \pm 3.3 \mbox{ (stat.)} \pm 2.0 \mbox{(sys.) fs} while the decay length distribution of three-prong decays gives the result \tau_{\tau} = 286.7 \pm 4.9 \mbox{ (stat.)} \pm 3.3 \mbox{ (sys.) fs}. Combining the results presented here with previous DELPHI measurements, we get \tau_{\tau} = 291.4 \pm 3.0 fs and find that the ratio of the coupling constant for tau decay relative to that for muon decay is 0.990 \pm 0.009, compatible with lepton universality.

Nuclear and High Energy PhysicsParticle physicsAlephElectron–positron annihilation01 natural sciencesMeasure (mathematics)Partícules (Física nuclear)tau lepton lifetimeNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsZ-DECAYSDELPHICoupling constantPhysicsMuon010308 nuclear & particles physicsDELPHI; tau lepton lifetime; one-prong; three-prongLARGE ELECTRON POSITRON COLLIDERthree-prongYield (chemistry)PARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIone-prongDecay lengthPARTICLE PHYSICSHigh Energy Physics::ExperimentFísica nuclearVertex detectorParticle Physics - ExperimentLepton
researchProduct

Strange baryon production in Z hadronic decays

1995

A study of the production of strange octet and decuplet baryons in hadronic decays of the Z recorded by the DELPHI detector at LEP is presented. This includes the first measurement of the ∑± average multiplicity. The total and differential cross sections, the event topology and the baryon-antibaryon correlations are compared with current hadronization models. © 1995 Springer-Verlag.

Particle physicsPhysics and Astronomy (miscellaneous)OctetLUND MONTE-CARLO; JETS; Z(0)LUND MONTE-CARLOElectron–positron annihilationHadronNuclear TheoryElementary particle01 natural sciencesPartícules (Física nuclear)Nuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum field theoryMultiplicity (chemistry)010306 general physicsNuclear ExperimentEngineering (miscellaneous)hadronic decayDELPHIPhysicsbaryon-anti-baryon correlation010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyZ(0)DELPHI; hadronic decay; baryon-anti-baryon correlationLARGE ELECTRON POSITRON COLLIDERHadronizationBaryonPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIJETSPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

A measurement of the \(\tau\) leptonic branching fractions

1995

Abstract: A sample of 25000 Z(0) --> tau(-)tau(+) events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the tau lepton. The results are B(tau --> e nu) = (17.51+/-0.39)% and B(tau --> mu nu) = (17.02+/-0.31)%. The ratio of the muon and electron couplings to the weak charged current is measured to be g(mu)/g(e) = 1.000+/-0.013, satisfying e-mu universality. The average leptonic branching fraction corrected to the value for a massless lepton, assuming e-mu universality, is found to be B(tau --> l nu) = (17.50+/-0.25)%.

Nuclear and High Energy PhysicsParticle physicsElectron–positron annihilationElectronComputer Science::Digital Libraries01 natural sciencesPartícules (Física nuclear)Nuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicslepton couplingCharged currentDELPHIPhysicsMuon010308 nuclear & particles physicsBranching fractionPhysicsHigh Energy Physics::Phenomenologytau leptonLARGE ELECTRON POSITRON COLLIDERUniversality (dynamical systems)Massless particlePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIComputer Science::Mathematical SoftwarePARTICLE PHYSICSHigh Energy Physics::ExperimentFísica nuclearParticle Physics - ExperimentDELPHI; tau lepton; lepton couplingLepton
researchProduct

A measurement of αs from the scaling violation in e+e- annihilation

1997

The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from $\zz$ decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is \begin{displaymath} \alpha_s(M_Z) = 0.124^{+0.006}_{-0.007}(exp)\pm 0.009 (theory) \end{displaymath} where the first error represents the experimental uncertainty and the second error is due to the factorization a…

QuarkNuclear and High Energy PhysicsParticle physicsE+E ANNIHILATIONElectron–positron annihilationFRAGMENTATION FUNCTIONSHadronHADRONIC-Z-DECAYS; JET PRODUCTION-RATES; E+E ANNIHILATION; FRAGMENTATION FUNCTIONS; ENERGY CORRELATIONS; PERTURBATIVE QCD; RESONANCE; EVOLUTION; PARTICLE; TESTS01 natural sciencesPartícules (Física nuclear)Nuclear physicsRenormalizationViolació CP (Física nuclear)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PERTURBATIVE QCD010306 general physicsNuclear ExperimentScalingDetectors de radiacióDELPHIPhysicsAnnihilation010308 nuclear & particles physicsJET PRODUCTION-RATESHigh Energy Physics::PhenomenologyPerturbative QCDRESONANCELARGE ELECTRON POSITRON COLLIDEREVOLUTIONDGLAPENERGY CORRELATIONSPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHITESTSPARTICLE PHYSICSHigh Energy Physics::ExperimentPARTICLEParticle Physics - ExperimentHADRONIC-Z-DECAYS
researchProduct

Charged particle multiplicity in e^{+}e_{-}$ → q[L:q] events at 161 and 172 GeV and from the decay of the W boson

1998

The data collected by DELPHI in 1996 have been used to measure the average charged particle multiplicities and dispersions in $q\bar{q}$ events at centre-of-mass energies of $\sqrt{s}=161$~GeV and $\sqrt{s}=172$~GeV, and the average charge multiplicity in WW events at $\sqrt{s}=172$~GeV. The multiplicities in $q\bar{q}$ events are consistent with the evolution predicted by QCD. The dispersions in the multiplicity distributions are consistent with Koba-Nielsen-Olesen (KNO) scaling. The average multiplicity of charged particles in hadronic W decays has been measured for the first time; its value, $19.23 \pm 0.74 (stat+syst)$, is consistent with that expected for an $e^+e^-$ interaction at a c…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsAnnihilation010308 nuclear & particles physicsElectron–positron annihilationHadronMultiplicity (mathematics)PartonCharge (physics)01 natural sciencesCharged particleNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPhysics letters: B
researchProduct

Measurement of the transverse spin correlation in Z → τ+ τ- decays

1997

The measurement of the correlation between the transverse spin components of tau(+)tau(-) pairs collected during 1992 to 1994 with the DELPHI detector at LEP1 is presented. A value C-TT = 0.87 +/- 0.20 (stat.)(-0.12)(+0.10) (syst.) was obtained for the correlation parameter, in agreement with the Standard Model expectation. (C) 1997 Published by Elsevier Science B.V.

QuarkNuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOElectron–positron annihilationLEP-SLC ENERGIES01 natural sciencesPartícules (Física nuclear)JET FRAGMENTATIONStandard ModelNuclear physicsPHYSICS0103 physical sciencesRADIATIVE-CORRECTIONS010306 general physicsNuclear ExperimentDetectors de radiacióLUND MONTE-CARLO; LEP-SLC ENERGIES; RADIATIVE-CORRECTIONS; JET FRAGMENTATION; TAU-POLARIZATION; SIMULATION; PHYSICS; QUARKSpin-½DELPHIPhysics010308 nuclear & particles physicsTAU-POLARIZATIONQUARKCenter (category theory)LARGE ELECTRON POSITRON COLLIDERTransverse planePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHISIMULATIONPARTICLE PHYSICSHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary Astrophysics
researchProduct

Measurement of the spin density matrix for the rho(0), K*(0)(892) and phi produced in Z(0) decays

1997

The spin density matrix elements for the rho(0), K-*0(892) and phi produced in hadronic Z(0) decays are measured in the DELPHI detector. There is no evidence for spin alignment of the K-*0(892) and phi, in the region x(p) less than or equal to 0.3 (x(p) = p/p(beam)), where rho(00) = 0.33 +/- 0.05 and rho(00) = 0.30 +/- 0.04, respectively. In the fragmentation region, x(p) greater than or equal to 0.4, there is some indication for spin alignment of the rho(0) and K-*0(892), since rho(00) = 0.43 +/- 0.05 and rho(00) = 0.46 +/- 0.08, respectively. These values are compared with those found in meson-induced hadronic reactions. For the phi, rho(00) = 0.30 +/- 0.04 for x(p) greater than or equal …

Nuclear and High Energy PhysicsMesonElectron–positron annihilationD-STARHadronANNIHILATIONSPartícules (Física nuclear)QUARK FRAGMENTATION; D-STAR; ANNIHILATIONS; HADRONS; MESONSNuclear physicsAngular distribution[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Matrix elementSpin densityDetectors de radiacióDELPHIPhysicsHADRONSD-STARQUARK FRAGMENTATIONLARGE ELECTRON POSITRON COLLIDERMESONSPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIMass spectrumPARTICLE PHYSICSAtomic physicsParticle Physics - ExperimentPHYSICS LETTERS B
researchProduct

Measurement of $\Delta^{++}$(1232) production in hadronic Z decays

1995

A measurement of the \Delta^{++}(1232) inclusive production in hadronic decays of the Z at LEP is presented, based on 1.3 million hadronic events collected~ by the DELPHI~ detector in the 1994 LEP running~ period. The DELPHI ring imaging Cherenkov counters are used for identifying hadrons. The average \Delta^{++}(1232) multiplicity per hadronic event is 0.079 \pm 0.015 which is more than a factor of two below the JETSET, HERWIG and UCLA model predictions. It agrees with a recently proposed universal mass dependence of particle production rates in e^{+}e^- annihilations.

Hadronic decayNuclear and High Energy PhysicsParticle physicsE+E ANNIHILATIONSe+e- annihilationCherenkov detectorElectron–positron annihilationDELPHI; hadronic decay; Cherenkov detector; e+e- annihilationHadron01 natural sciencesPartícules (Física nuclear)law.inventionNuclear physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Multiplicity (chemistry)010306 general physicsCherenkov radiationhadronic decayDELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentCherenkov detector
researchProduct

Measurement of correlations between pions from different W's in e+e- → W+W- events

1997

Correlations between pions from different W's in e(+)e(-) --> W+W- events are studied using data collected by the DELPHI detector at LEP running at a centre-of-mass energy of 172 GeV in 1996. At the present level of statistics, no enhancement of the correlation function above that expected from a pair of uncorrelated W's is observed at small values of the four-momentum difference of the pions. (C) 1997 Published by Elsevier Science B.V.

Nuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOElectron–positron annihilationBOSE-EINSTEIN CORRELATIONS; LUND MONTE-CARLO; JET FRAGMENTATION; PHYSICS; INTERFEROMETRY; DECAYS; Z(0); Z001 natural sciencesJET FRAGMENTATIONDECAYSPartícules (Física nuclear)Nuclear physicsPHYSICSINTERFEROMETRYPionCorrelation function0103 physical sciencesZ0010306 general physicsNuclear ExperimentDELPHIPhysics010308 nuclear & particles physicsAcceleradors de partículesBose–Einstein correlationsZ(0)LARGE ELECTRON POSITRON COLLIDERUncorrelatedBOSE-EINSTEIN CORRELATIONSLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::Experiment
researchProduct

Energy dependence of the differences between the quark and gluon jet fragmentation

1996

Three jet events arising from decays of the Z beson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is [ r ] = 1.241 +/- 0.015 (stat.) +/- 0.025 (syst.). Gluon jets are broa…

QuarkParticle physicsE+E ANNIHILATIONPhysics and Astronomy (miscellaneous)Astrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::LatticeHadron7. Clean energy01 natural sciencesBottom quarkPartícules (Física nuclear)Nuclear physicsCOLLIDER0103 physical sciencesCHARGED-PARTICLE MULTIPLICITY[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]3-JET EVENTSDISTRIBUTIONSALPHA-SNuclear Experiment010306 general physicsDELPHIQuantum chromodynamicsPhysics010308 nuclear & particles physicsALGORITHMSHigh Energy Physics::PhenomenologyPerturbative QCDLEPgluon fragmentationLARGE ELECTRON POSITRON COLLIDERQCDPhoton structure functionCHARGED-PARTICLE MULTIPLICITY; E+E ANNIHILATION; ROOT-S; 3-JET EVENTS; ALPHA-S; LEP; DISTRIBUTIONS; ALGORITHMS; COLLIDER; QCDGluonThree-jet eventROOT-SLEP; DELPHI; 3-jet events; gluon fragmentationPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Lifetime and production rate of beauty baryons from Z decays

1995

The production and decay of beauty baryons (b-baryons) have been studied using 1.7 \times 10^6 Z hadronic decays collected by the DELPHI detector at LEP. Three different techniques were used to identify the b-baryons. The first method used pairs of a \Lambda and a lepton to tag the b-baryon decay. The second method associated fully reconstructed \Lambda_c baryons with leptons. The third analysis reconstructed the b-baryon decay points by forming secondary vertices from identified protons and muons of opposite sign. Using these methods the following production rates were measured: \begin{eqnarray*} f(\qb \ra \Bb) \times \BR(\Bb \ra \mLs \ell\bar{\nu}_{\ell}\X) & = & (0.30 \pm 0.06 \pm0.04)\%…

Particle physicsPhysics and Astronomy (miscellaneous)Electron–positron annihilationHadronNuclear TheoryElementary particleAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesPartícules (Física nuclear)b taggingNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentEngineering (miscellaneous)b-baryonAstrophysics::Galaxy AstrophysicsDELPHIPhysicslifetimeMuonHEAVY MESONS010308 nuclear & particles physicsBranching fractionDELPHI; b-baryon; b tagging; lifetimeHigh Energy Physics::Phenomenologyb-taggingLARGE ELECTRON POSITRON COLLIDERBaryonPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentLepton
researchProduct

Search for charged Higgs bosons in e^{+}e^{-}$ collisions at √s=172 GeV

1998

This paper presents results on charged Higgs boson production, based on LEP data collected at √s = 172 GeV, that complement the previous DELPHI results obtained at centre of mass energies up to 161 GeV. The charged Higgs bosons are assumed to be pair produced and to decay either into a quark pair or into τVτ. The three different possible final states are included in the analysis. Data from ring imaging Cherenkov and microvertex detectors are used to identify the quarks as a cs pair. The number of candidates found is compatible with the background expected from standard processes. Combining the results of the present analysis with those of the previous analysis at lower energies, a new lower…

QuarkPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsElectron–positron annihilationHigh Energy Physics::Phenomenology01 natural sciencesNuclear physics0103 physical sciencesLarge Electron–Positron ColliderHiggs bosonHigh Energy Physics::ExperimentLimit (mathematics)010306 general physicsCherenkov radiationComplement (set theory)BosonPhysics letters: B
researchProduct

MEASUREMENT OF THE FORWARD-BACKWARD ASYMMETRY OF CHARM AND BOTTOM QUARKS AT THE Z-POLE USING D-ASTERISK(+/-)-MESONS

1995

The forward-backward asymmetries for the processes $$e^ + e^ - \to c\bar c$$ and $$e^ + e^ - \to b\bar b$$ at theZ resonance are measured using identifiedD *± mesons. In 905,000 selected hadronic events, taken in 1991 and 1992 with the DEL-PHI detector at LEP, 4757D *+→D 0π+ decays are reconstructed. Thec andb quark forward-backward asymmetries are determined to be: $$\begin{gathered} A_{FB}^{c\bar c} = 0.077 \pm 0.029(stat) \pm 0.012(sys), \hfill \\ A_{FB}^{b\bar b} = 0.059 \pm 0.062(stat) \pm 0.024(sys). \hfill \\ \end{gathered} $$ Constraining theb asymmetry to the value measured by DELPHI using independent analyses, the charm asymmetry is determined to be: $$A_{FB}^{c,const} = 0.068 \pm…

QuarkParticle physicsPhysics and Astronomy (miscellaneous)MesonElectron–positron annihilationHadron01 natural sciencesDECAYSPartícules (Física nuclear)Charm quarkNuclear physicsDELPHI; forward-backward asymmetry; QCD0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]DECAYS; QCDCharm (quantum number)010306 general physicsEngineering (miscellaneous)DELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyWeinberg angleQCDLARGE ELECTRON POSITRON COLLIDERPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderPARTICLE PHYSICSforward-backward asymmetryHigh Energy Physics::ExperimentCol·lisionadors d'hadronsParticle Physics - Experiment
researchProduct

mb at MZ

1998

Abstract The value of the b quark mass at the M Z scale defined in the MS renormalization scheme, m b ( M Z ), was determined using 2.8 million hadronic Z decays collected during 1992-1994 by the DELPHI detector to be m b (M Z )=2.67±0.25 ( stat. )±0.34 ( frag. )±0.27 ( theo. ) GeV/c 2 . The analysis considers NLO corrections to the three-jet production rate including mass effects, and the result obtained agrees with the QCD prediction of having a running b quark mass at an energy scale equal to M Z . This is the first time that such a measurement is performed far above the b b production threshold. The study also verifies the flavour independence of the strong coupling constant for b and l…

PhysicsQuantum chromodynamicsQuarkNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyFlavourHadron01 natural sciencesBottom quarkLARGE ELECTRON POSITRON COLLIDERRenormalizationNuclear physics0103 physical sciencesLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::Experiment010306 general physicsProduction rateDELPHI
researchProduct

A measurement of the photon structure function F-2(gamma) at an average Q(2) of 12 GeV2/c(4)

1995

The hadronic photon structure function F_{2}^{gamma} has been measured in the Q^{2} range from 4 to 30~GeV^2/c^{4} and down to x values of order 0.001, using data taken with the DELPHI detector at LEP between 1991 and 1993. A comparison is made with several F_{2}^{gamma} parameterizations with special emphasis on their low x behaviour. A result on the Q^{2} evolution of F_{2}^{gamma} is presented.

Particle physicsPhotonPhysics and Astronomy (miscellaneous)LEP; DELPHI; hadronic photon structureHadronMONTE-CARLO SIMULATIONStructure (category theory)01 natural sciencesC-4Partícules (Física nuclear)JET FRAGMENTATIONlaw.inventionQ2Nuclear physicsMONTE-CARLO SIMULATION; STRUCTURE-FUNCTION F2; JET FRAGMENTATION; E+E-PHYSICS; QCD; Q2; SCATTERING; ORDERlaw0103 physical sciencesRange (statistics)SCATTERINGhadronic photon structure010306 general physicsDELPHIQuantum chromodynamicsPhysicsE+E-PHYSICS010308 nuclear & particles physicsScatteringEmphasis (telecommunications)DetectorOrder (ring theory)ORDERLEPQCDLARGE ELECTRON POSITRON COLLIDERPhoton structure functionPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIMass spectrumPARTICLE PHYSICSFísica nuclearSTRUCTURE-FUNCTION F2
researchProduct