0000000000640375

AUTHOR

Sebastian Brusca

Realistic Steady State Performance of an Electric Turbo-Compound Engine for Hybrid Propulsion System

The efficiency of Hybrid Electric Vehicles (HEVs) may be substantially increased if the unexpanded exhaust gas energy is efficiently recovered and employed for vehicle propulsion. This can be accomplished employing a properly designed exhaust gas turbine connected to a suitable generator whose output electric energy is stored in the vehicle storage system; a new hybrid propulsion system is hence delineated, where the power delivered by the main engine is combined to the power produced by the exhaust gas turbogenerator: previous studies, carried out under some simplifying assumptions, showed potential vehicle efficiency increments up to 15% with respect to a traditional turbocharged engine. …

research product

A Feasibility Analysis of an Electric KERS for Internal Combustion Engine Vehicles

In this work, the authors evaluate the energetic and economic advantages connected to the implementation of an electric Kinetic Energy Recovery System (e-KERS) on an internal combustion engine vehicle (ICEV). The e-KERS proposed is based on the use of a supercapacitor (SC) as energy storage element, a brushless motor generator unit (MGU) for the conversion of the vehicle kinetic energy into electric energy (and vice versa), and a power converter properly designed to manage the power transfer between SC and MGU. The low complexity of the system proposed, the moderate volume and weight of the components selected for its assembly, together with their immediate availability on the market, make …

research product