The Protein Corona as a Confounding Variable of Nanoparticle-Mediated Targeted Vaccine Delivery
Nanocarriers (NC) are very promising tools for cancer immunotherapy. Whereas conventional vaccines are based on the administration of an antigen and an adjuvant in an independent fashion, nanovaccines can facilitate cell-specific co-delivery of antigen and adjuvant. Furthermore, nanovaccines can be decorated on their surface with molecules that facilitate target-specific antigen delivery to certain antigen-presenting cell types or tumor cells. However, the target cell-specific uptake of nanovaccines is highly dependent on the modifications of the nanocarrier itself. One of these is the formation of a protein corona around NC after in vivo administration, which may potently affect cell-speci…
Nanocarriers and immune cells
Nanocarriers (NCs) have a high potential as target-specific drug-delivery system. Especially immune cells are a prime target in the nanoparticle-cell interaction. Uptake into the correct subtype of immune cells is crucial. Therefore uptake processes as well as intracellular processing is of utmost importance. The so-called protein corona heavily affects the interaction with immune cells which can decide the fate of the NC for degradation. On a wider perspective also nanoparticles which were not intentionally made for the transport of drugs get in contact with immune cells e.g. in the lungs. These immune cells are then trying to degrade these foreign materials.