0000000000641583
AUTHOR
Pijush Samui
Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks
There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, …
Early prediction of COVID-19 outcome using artificial intelligence techniques and only five laboratory indices
We aimed to develop a prediction model for intensive care unit (ICU) hospitalization of Coronavirus disease-19 (COVID-19) patients using artificial neural networks (ANN). We assessed 25 laboratory parameters at first from 248 consecutive adult COVID-19 patients for database creation, training, and development of ANN models. We developed a new alpha-index to assess association of each parameter with outcome. We used 166 records for training of computational simulations (training), 41 for documentation of computational simulations (validation), and 41 for reliability check of computational simulations (testing). The first five laboratory indices ranked by importance were Neutrophil-to-lymphoc…