0000000000641635

AUTHOR

Désiré Ndjanfang

Compact-like pulse signals in a new nonlinear electrical transmission line

International audience; A nonlinear electrical transmission line with an intersite circuit element acting as a nonlinear resistance is introduced and investigated. In the continuum limit, the dynamics of localized signals is described by a nonlinear evolution equation belonging to the family of nonlinear diffusive Burgers' equations. This equation admits compact pulse solutions and shares some symmetry properties with the Rosenau-Hyman K(2,2) equation. An exact discrete compactly- supported signal voltage is found for the network and the dissipative effects on the pulse motion analytically studied. Numerical simulations confirm the validity of analytical results and the robustness of these …

research product

On the analytical expression of the multicompacton and some exact compact solutions of a nonlinear diffusive Burgers’type equation

International audience; We consider the nonlinear diffusive Burgers' equation as a model equation for signals propagation on the nonlinear electrical transmission line with intersite nonlinearities. By applying the extend sine-cosine method and using an appropriate modification of the Double-Exp function method, we successfully derived on one hand the exact analytical solutions of two types of solitary waves with strictly finite extension or compact support: kinks and pulses, and on the other hand the exact solution for two interacting pulse solitary waves with compact support. These analytical results indicate that the speed of the pulse compactons doesn't depends explicitly on the pulse a…

research product