0000000000642799
AUTHOR
C.j. David Lin
An exploratory lattice study of Delta I=3/2 K ->pi pi decays at next-to-leading order in the chiral expansion
We present the first direct evaluation of Delta I = 3/2K -> pi pi matrix elements with the aim of determining all the low-energy constants at NLO in the chiral expansion. Our numerical investigation demonstrates that it is indeed possible to determine the K -> pi pi matrix elements directly for the masses and momenta used in the simulation with good precision. In this range however, we find that the matrix elements do not satisfy the predictions of NLO chiral perturbation theory. For the chiral extrapolation we therefore use a hybrid procedure which combines the observed polynomial behavior in masses and momenta of our lattice results, with NLO chiral perturbation theory at lower masses. In…
Matrix elements of Delta I=3/2 K ->pi pi decays
We present a numerical computation of matrix elements of DeltaI = 3/2 K --> pipi decays by using Wilson fermions. In order to extrapolate to the physical point we work at unphysical kinematics and we resort to Chiral Perturbation Theory at the next-to-leading order. In particular we explain the case of the electroweak penguins O-7,O-8 which can contribute significantly in the theoretical prediction of epsilon'/epsilon. The study is done at beta = 6.0 on a 24(3) x 64 lattice.