0000000000643181
AUTHOR
En Xia Zhang
Parasitic Bipolar Action in SiC Power MOSFETs Demonstrated by Two-Photon Laser Experiment
A two-photon absorption technique is explored for Silicon carbide power MOSFETs and power junction barrier Schottky diodes using a pulsed laser. The similarities in design between the specific MOSFETs and diodes tested permit using mechanisms existing in the different structures as explanation for observed current variation with laser position. The diode shows variation in average current with change in laser depth only, whereas the MOSFET shows variation both with shifts in depth and shifts in position across the striped geometry of the device. The variation is explained to be due to bipolar amplification of the charge carriers generated in the MOSFET when a pulse focus includes a channel …
Enhanced Charge Collection in SiC Power MOSFETs Demonstrated by Pulse-Laser Two-Photon Absorption SEE Experiments
A two-photon absorption technique is used to understand the mechanisms of single-event effects (SEEs) in silicon carbide power metal–oxide–field-effect transistors (MOSFETs) and power junction barrier Schottky diodes. The MOSFETs and diodes have similar structures enabling the identification of effects associated specifically with the parasitic bipolar structure that is present in the MOSFETs, but not the diodes. The collected charge in the diodes varies only with laser depth, whereas it varies with depth and lateral position in the MOSFETs. Optical simulations demonstrate that the variations in collected charge observed are from the semiconductor device structure and not from metal/passiva…