High-resolution rovibrational spectroscopy of c-C3H2+: The ν7 C–H antisymmetric stretching band
Abstract The ν 7 antisymmetric C–H stretching fundamental of c- C 3 H 2 + has been characterized in a cryogenic 22-pole ion trap by a novel type of action spectroscopy, in which the rovibrational excitation of c- C 3 H 2 + is detected as a slowing down of the low-temperature reaction c- C 3 H 2 + + H2 → C 3 H 3 + + H. Ninety-one rovibrational transitions with partly resolved fine structure doublets were measured in high resolution. Supported by high-level quantum chemical calculations, spectroscopic parameters were determined by fitting the observed lines with an effective Hamiltonian for an asymmetric rotor in a doublet electronic ground state, X ˜ A 1 2 , yielding a band origin at 3113.6…