Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets
Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spinconserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇ 2 [m × (u · ∇)m] + ξ ∇ 2 [(u · ∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dyna…