0000000000643310

AUTHOR

Broņislavs Leščinskis

showing 2 related works from this author

Effects of external energetic factors on tritium release from the EXOTIC 8-3/13 neutron-irradiated beryllium pebbles

2009

Abstract Tritium release from samples of 9–13 mg of the EXOTIC 8-3/13 neutron-irradiated beryllium pebbles under the separate and simultaneous action of temperature 490–770 K, 5 MeV fast-electron radiation 14 MGy h−1 for 3 h and magnetic field (MF) of 1.7 T was investigated. The pebbles were found to be very dissimilar with respect to their total tritium content—2.5–9 MBq g−1. The batch contained also some coarse agglomerates of the pebbles containing 10–19 MBq g−1 of tritium having also a high tritium release. For the pebbles having the total tritium 2.5–5.3 MBq g−1, the electron radiation for 3 h caused the fractional tritium release 17–26% (B = 0) and 21–29% (B = 1.7 T), the temperature …

Materials scienceMechanical EngineeringRadiochemistrychemistry.chemical_elementBlanketFusion powerNuclear physicsNuclear Energy and EngineeringchemistryAgglomerateGeneral Materials ScienceNeutronTritiumIrradiationBerylliumHeliumCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Tritium sorption and desorption from JET beryllium tiles under temperature, electron radiation and magnetic field

2008

Abstract Tritium release at annealing of samples cut from beryllium tiles exposed to D + D, D + T plasma in the Joint European Torus (JET) was investigated under 5 MeV fast-electron radiation at the dose rate 14 MGy h −1 and in a magnetic field of 1.7 T separately and simultaneously in order to evaluate possible effects of these factors. Abundances of chemical forms of tritium—molecular T 2 (44%), atomic T 0 (42%), and ionic T + (14%) and their distribution were determined in the plasma-exposed beryllium samples with lyomethods. Fast-electron radiation considerably increased the fractional tritium release at annealing by a factor of approximately 5. The magnetic field increased the fraction…

Materials scienceAnnealing (metallurgy)Mechanical EngineeringJoint European TorusAnalytical chemistrychemistry.chemical_elementSorptionPlasmaRadiationNuclear physicsNuclear Energy and EngineeringchemistryDesorptionGeneral Materials ScienceTritiumBerylliumCivil and Structural EngineeringFusion Engineering and Design
researchProduct