0000000000644471

AUTHOR

Nico Teske

Water-Soluble Cuprizone Derivative: Synthesis, Characterization, and in Vitro Studies

The cuprizone mouse model is one of the most accepted model systems for the investigation of oligodendrocyte degeneration, a process critically involved in the pathogenesis of diseases such as multiple sclerosis or schizophrenia. In order to substitute the in vivo experiments by in vitro approaches, the amine derivative BiMPi is introduced as a water-soluble alternative to cuprizone. Regarding superoxide dismutase activity, toxicity for oligodendrocytes, and disturbance of mitochondrial membrane potential, BiMPi shows similar in vitro effects as is observed in vivo for cuprizone. peerReviewed

research product

CCDC 1846187: Experimental Crystal Structure Determination

Related Article: Martin Fries, Meike Mertens, Nico Teske, Markus Kipp, Cordian Beyer, Thomas Willms, Arto Valkonen, Kari Rissanen, Markus Albrecht, and Tim Clarner|2019|ACS Omega|4|1685|doi:10.1021/acsomega.8b02523

research product

CCDC 1846185: Experimental Crystal Structure Determination

Related Article: Martin Fries, Meike Mertens, Nico Teske, Markus Kipp, Cordian Beyer, Thomas Willms, Arto Valkonen, Kari Rissanen, Markus Albrecht, and Tim Clarner|2019|ACS Omega|4|1685|doi:10.1021/acsomega.8b02523

research product

CCDC 1846186: Experimental Crystal Structure Determination

Related Article: Martin Fries, Meike Mertens, Nico Teske, Markus Kipp, Cordian Beyer, Thomas Willms, Arto Valkonen, Kari Rissanen, Markus Albrecht, and Tim Clarner|2019|ACS Omega|4|1685|doi:10.1021/acsomega.8b02523

research product