0000000000644515

AUTHOR

Amelia Barilli

0000-0002-2256-0530

showing 7 related works from this author

INFγ stimulates arginine transport through system y+L in human monocytes

2004

Freshly isolated human monocytes transport L-arginine mostly through a sodium independent, NEM insensitive pathway inhibited by L-leucine in the presence, but not in the absence of sodium. Interferon-gamma (IFNgamma) stimulates this pathway, identifiable with system y+L, and markedly enhances the expression of SLC7A7, the gene that encodes for system y+L subunit y+LAT1, but not of SLC7A6, that codes for the alternative subunit y+LAT2. System y+ plays a minor role in arginine uptake by monocytes and the expression of system y+-related genes, SLC7A1 and SLC7A2, is not changed by IFNgamma. These results demonstrate that system y+L is sensitive to IFNgamma.

ArginineSodiumProtein subunitBiophysicschemistry.chemical_elementBiologyLPI - Lysinuric protein intoleranceArginineMonocyteBiochemistryMonocytesInterferon-gammaInterferon γLeucineStructural BiologyArginine transportSystem y+L.GeneticsmedicineHumansMolecular BiologyGeneLysinuric protein intoleranceCells CulturedArginine transportReverse Transcriptase Polymerase Chain ReactionFusion Regulatory Protein 1 Light ChainsMonocyteSodiumAmino Acid Transport System y+LBiological TransportCell BiologyMolecular biologyRecombinant ProteinsKineticsmedicine.anatomical_structurechemistryEthylmaleimideAmino Acid Transport Systems BasicInterferon-γFEBS Letters
researchProduct

In Lysinuric Protein Intolerance system y+L activity is defective in monocytes and in GM-CSF-differentiated macrophages

2010

Abstract Background In the recessive aminoaciduria Lysinuric Protein Intolerance (LPI), mutations of SLC7A7/y+LAT1 impair system y+L transport activity for cationic amino acids. A severe complication of LPI is a form of Pulmonary Alveolar Proteinosis (PAP), in which alveolar spaces are filled with lipoproteinaceous material because of the impaired surfactant clearance by resident macrophages. The pathogenesis of LPI-associated PAP remains still obscure. The present study investigates for the first time the expression and function of y+LAT1 in monocytes and macrophages isolated from a patient affected by LPI-associated PAP. A comparison with mesenchymal cells from the same subject has been a…

AdultMaleCellular differentiationlcsh:MedicinePulmonary Alveolar ProteinosisBiologyMonocytesPathogenesisYoung AdultMacrophages AlveolarmedicineHumansGenetics(clinical)Pharmacology (medical)Amino Acid Metabolism Inborn ErrorsCells CulturedGenetics (clinical)Medicine(all)chemistry.chemical_classificationResearchFusion Regulatory Protein 1 Light ChainsLysinelcsh:RMesenchymal stem cellAmino Acid Transport System y+LGranulocyte-Macrophage Colony-Stimulating FactorCell DifferentiationGeneral Medicinemedicine.diseaseLysinuric protein intoleranceMolecular biologyAmino acidGranulocyte macrophage colony-stimulating factorchemistryAminoaciduriaImmunologyPulmonary alveolar proteinosismedicine.drugOrphanet Journal of Rare Diseases
researchProduct

In human endothelial cells rapamycin causes mTORC2 inhibition and impairs cell viability and function.

2008

Aim Drug-eluting stents are widely used to prevent restenosis but are associated with late endothelial damage. To understand the basis for this effect, we have studied the consequences of a prolonged incubation with rapamycin on the viability and functions of endothelial cells. Methods and results Human umbilical vein or aorta endothelial cells were exposed to rapamycin in the absence or in the presence of tumour necrosis factor α (TNFα). After a 24 h-incubation, rapamycin (100 nM) caused a significant cell loss associated with the increase of both apoptosis and necrosis, as quantified by propidium iodide staining, caspase 3 activity, and lactate dehydrogenase release. Rapamycin also impair…

Time FactorsPhysiologyApoptosismTORC1Polymerase Chain Reactionchemistry.chemical_compoundCell MovementStress FibersMicroscopy ConfocalCaspase 3TOR Serine-Threonine KinasesNitric Oxide Synthase Type IIIRibosomal Protein S6 Kinases 70-kDaUp-RegulationEndothelial stem cellmedicine.anatomical_structureBiochemistryCardiology and Cardiovascular MedicineE-SelectinEndotheliumNitric Oxide Synthase Type IIICell SurvivalBlotting WesternEnzyme-Linked Immunosorbent AssayBiologyMechanistic Target of Rapamycin Complex 1Nitric OxideTacrolimusNecrosisTheophyllinePhysiology (medical)medicineHumansImmunoprecipitationViability assayPropidium iodideProtein kinase BAdaptor Proteins Signal TransducingSirolimusDose-Response Relationship DrugL-Lactate DehydrogenaseTumor Necrosis Factor-alphaEndothelial CellsProteinsCardiovascular AgentsRegulatory-Associated Protein of mTORMolecular biologyRapamycin-Insensitive Companion of mTOR ProteinchemistryMultiprotein ComplexesTOR Serine-Threonine KinasesCarrier ProteinsProtein KinasesTranscription FactorsCardiovascular research
researchProduct

Gliadin activates arginase pathway in RAW264.7 cells and in human monocytes

2014

AbstractCeliac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. Recent studies have demonstrated that macrophages play a key role in the pathogenesis of CD through the release of inflammatory mediators such as cytokines and nitric oxide (NO). Since arginine is the obliged substrate of iNOS (inducible nitric oxide synthase), the enzyme that produces large amount of NO, the aim of this work is to investigate arginine metabolic pathways in RAW264.7 murine macrophages after treatment with PT-gliadin (PTG) in the absence and in the presence of IFNγ. Our results demonstrate that, besides strengthening the IFNγ-dependent …

OrnithineArginineBlotting WesternNitric Oxide Synthase Type IIOrnithine DecarboxylaseReal-Time Polymerase Chain ReactionArginineMonocytesGliadinOrnithine decarboxylaseInterferon-gammaMicechemistry.chemical_compoundmedicineAnimalsHumansCeliac diseaseMacrophageRNA MessengerMolecular BiologyCells CulturedArginasebiologyReverse Transcriptase Polymerase Chain ReactionMacrophagesMonocytenutritional and metabolic diseasesNitric oxideOrnithineMolecular biologyPeptide FragmentsNitric oxide synthaseArginasemedicine.anatomical_structureBiochemistrychemistrybiology.proteinMolecular MedicineInterferon-γGliadinBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
researchProduct

Gliadin-mediated production of polyamines by RAW264.7 macrophages modulates intestinal epithelial permeability in vitro

2015

AbstractCeliac disease (CD) is an immune-mediated enteropathy sustained by dietary gluten in susceptible individuals, and characterized by a complex interplay between adaptive and innate responses against gluten peptides (PTG). In a recent contribution we have demonstrated that the treatment with PTG induces the expression and activity of arginase in both murine macrophages and human monocytes from healthy subjects, thus suggesting a role for arginine and its metabolites in gluten-triggered response of these cells. Here we further explore this field, by addressing the effects of PTG on polyamine synthesis and release in murine RAW264.7 macrophages, and how they affect epithelial permeabilit…

Intestinal permeabilityArginineArginaseInflammationBiologyIntestinal permeabilitymedicine.diseaseIn vitroGliadinCell biologyArginasechemistry.chemical_compoundBiochemistrychemistrymedicinePutrescinebiology.proteinPolyaminesMolecular MedicineCeliac diseaseSecretionmedicine.symptomGliadinMolecular BiologyBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
researchProduct

Rapamycin stimulates arginine influx through CAT2 transporters in human endothelial cells

2007

In endothelial cells Tumor Necrosis Factor-alpha (TNFalpha) stimulates arginine transport through the increased expression of SLC7A2/CAT2 transcripts. Here we show that also rapamycin, an inhibitor of mTOR kinase, stimulates system y(+)-mediated arginine uptake in human endothelial cells derived from either saphenous (HSVECs) or umbilical veins (HUVECs). When used together with TNFalpha, rapamycin produces an additive stimulation of arginine transport in both cell models. These effects are observed also upon incubation with AICAR, a stimulator of Adenosine-Monophosphate-dependent-Protein Kinase (AMPK) that produces a rapamycin-independent inhibition of the mTOR pathway. Rapamycin increases …

CAT transporterArginineBlotting WesternBiophysicsBiologyArginineNitric OxideBiochemistryWestern blotSLC7A genemedicineHumansAmino AcidsPI3K/AKT/mTOR pathwayDNA PrimersSirolimusArginine transportmedicine.diagnostic_testKinaseReverse Transcriptase Polymerase Chain ReactionTumor Necrosis Factor-alphaAMPKEndothelial CellsBiological TransportCell BiologySystem y+Molecular biologyImmunohistochemistryGene Expression RegulationmTORAmino Acid Transport Systems BasicTumor necrosis factor alphaIntracellularBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

The stimulation of arginine transport by TNFα in human endothelial cells depends on NF-κB activation

2004

In human saphenous vein endothelial cells (HSVECs), tumor necrosis factor-alpha (TNFalpha) and bacterial lipopolysaccharide (LPS), but neither interferon gamma (IFNgamma) nor interleukin 1beta (IL-1beta), stimulate arginine transport. The effects of TNFalpha and LPS are due solely to the enhancement of system y+ activity, whereas system y+L is substantially unaffected. TNFalpha causes an increased expression of SLC7A2/CAT-2B gene while SLC7A1/CAT-1 expression is not altered by the cytokine. The suppression of PKC-dependent transduction pathways, obtained with the inhibitor chelerytrhine, the inhibitor peptide of PKCzeta isoform, or chronic exposure to phorbol esters, does not prevent TNFalp…

MAPK/ERK pathwayLipopolysaccharidesmedicine.medical_specialtyUmbilical VeinsTime FactorsCAT transporterArginineTranscription Geneticp38 mitogen-activated protein kinasesmedicine.medical_treatmentBiophysicsPharmacologyBiologyArgininePolymerase Chain Reactionp38 Mitogen-Activated Protein KinasesBiochemistryInterferon-gammaInternal medicineCationsmedicineTNFαHumansInterferon gammaRNA MessengerCationic Amino Acid Transporter 2Cells CulturedProtein Kinase CArginine transportReverse Transcriptase Polymerase Chain ReactionTumor Necrosis Factor-alphaNF-kappa BBiological TransportCell BiologyCytokineEndocrinologySLC7 geneAmino Acid Transport Systems BasicCytokinesTumor necrosis factor alphaEndothelium VascularSignal transductionMitogen-Activated Protein KinasesPeptidesmedicine.drugInterleukin-1Signal TransductionNFκBBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct