6533b829fe1ef96bd1289983

RESEARCH PRODUCT

INFγ stimulates arginine transport through system y+L in human monocytes

Ovidio BussolatiEnrica TalaricoBianca Maria RotoliAmelia BarilliValeria Dall'astaRoberto SalaGian C. Gazzola

subject

ArginineSodiumProtein subunitBiophysicschemistry.chemical_elementBiologyLPI - Lysinuric protein intoleranceArginineMonocyteBiochemistryMonocytesInterferon-gammaInterferon γLeucineStructural BiologyArginine transportSystem y+L.GeneticsmedicineHumansMolecular BiologyGeneLysinuric protein intoleranceCells CulturedArginine transportReverse Transcriptase Polymerase Chain ReactionFusion Regulatory Protein 1 Light ChainsMonocyteSodiumAmino Acid Transport System y+LBiological TransportCell BiologyMolecular biologyRecombinant ProteinsKineticsmedicine.anatomical_structurechemistryEthylmaleimideAmino Acid Transport Systems BasicInterferon-γ

description

Freshly isolated human monocytes transport L-arginine mostly through a sodium independent, NEM insensitive pathway inhibited by L-leucine in the presence, but not in the absence of sodium. Interferon-gamma (IFNgamma) stimulates this pathway, identifiable with system y+L, and markedly enhances the expression of SLC7A7, the gene that encodes for system y+L subunit y+LAT1, but not of SLC7A6, that codes for the alternative subunit y+LAT2. System y+ plays a minor role in arginine uptake by monocytes and the expression of system y+-related genes, SLC7A1 and SLC7A2, is not changed by IFNgamma. These results demonstrate that system y+L is sensitive to IFNgamma.

10.1016/j.febslet.2004.06.086http://dx.doi.org/10.1016/j.febslet.2004.06.086