Banach spaces where convex combinations of relatively weakly open subsets of the unit ball are relatively weakly open
We introduce and study Banach spaces which have property CWO, i.e., every finite convex combination of relatively weakly open subsets of their unit ball is open in the relative weak topology of the unit ball. Stability results of such spaces are established, and we introduce and discuss a geometric condition---property (co)---on a Banach space. Property (co) essentially says that the operation of taking convex combinations of elements of the unit ball is, in a sense, an open map. We show that if a finite dimensional Banach space $X$ has property (co), then for any scattered locally compact Hausdorff space $K$, the space $C_0(K,X)$ of continuous $X$-valued functions vanishing at infinity has…
Delta- and Daugavet points in Banach spaces
AbstractA Δ-pointxof a Banach space is a norm-one element that is arbitrarily close to convex combinations of elements in the unit ball that are almost at distance 2 fromx. If, in addition, every point in the unit ball is arbitrarily close to such convex combinations,xis a Daugavet point. A Banach spaceXhas the Daugavet property if and only if every norm-one element is a Daugavet point. We show that Δ- and Daugavet points are the same inL1-spaces, inL1-preduals, as well as in a big class of Müntz spaces. We also provide an example of a Banach space where all points on the unit sphere are Δ-points, but none of them are Daugavet points. We also study the property that the unit ball is the clo…
On Daugavet indices of thickness
Inspired by R. Whitley's thickness index the last named author recently introduced the Daugavet index of thickness of Banach spaces. We continue the investigation of the behavior of this index and also consider two new versions of the Daugavet index of thickness, which helps us solve an open problem which connect the Daugavet indices with the Daugavet equation. Moreover, we will improve the formerly known estimates of the behavior of Daugavet index on direct sums of Banach spaces by establishing sharp bounds. As a consequence of our results we prove that, for every $0<\delta<2$, there exists a Banach space where the infimum of the diameter of convex combinations of slices of the unit ball i…