0000000000644598
AUTHOR
Märt Põldvere
Banach spaces where convex combinations of relatively weakly open subsets of the unit ball are relatively weakly open
We introduce and study Banach spaces which have property CWO, i.e., every finite convex combination of relatively weakly open subsets of their unit ball is open in the relative weak topology of the unit ball. Stability results of such spaces are established, and we introduce and discuss a geometric condition---property (co)---on a Banach space. Property (co) essentially says that the operation of taking convex combinations of elements of the unit ball is, in a sense, an open map. We show that if a finite dimensional Banach space $X$ has property (co), then for any scattered locally compact Hausdorff space $K$, the space $C_0(K,X)$ of continuous $X$-valued functions vanishing at infinity has…
New applications of extremely regular function spaces
Let $L$ be an infinite locally compact Hausdorff topological space. We show that extremely regular subspaces of $C_0(L)$ have very strong diameter $2$ properties and, for every real number $\varepsilon$ with $0<\varepsilon<1$, contain an $\varepsilon$-isometric copy of $c_0$. If $L$ does not contain isolated points they even have the Daugavet property, and thus contain an asymptotically isometric copy of $\ell_1$.