Testing generalized CP symmetries with precision studies at DUNE
We examine the capabilities of the DUNE experiment in probing leptonic CP violation within the framework of theories with generalized CP symmetries characterized by the texture zeros of the corresponding CP transformation matrices. We investigate DUNE's potential to probe the two least known oscillation parameters, the atmospheric mixing angle $\theta_{23}$ and the Dirac CP-phase $\delta_{\rm CP}$. We fix theory-motivated benchmarks for ($ \sin^2\theta_{23}, \delta_{\rm CP} $) and take them as true values in our simulations. Assuming 3.5 years of neutrino running plus 3.5 years in the antineutrino mode, we show that in all cases DUNE can significantly constrain and in certain cases rule out…
Status and prospects of ‘bi-large’ leptonic mixing
Bi-large patterns for the leptonic mixing matrix are confronted with current neutrino oscillation data. We analyse the status of these patterns and determine, through realistic simulations, the potential of upcoming long-baseline experiment DUNE in testing bi-large \emph{ansatze} and discriminating amongst them.