0000000000645006

AUTHOR

Alexis D. Plascencia

0000-0001-6393-4802

On Anomaly-Free Dark Matter Models

We investigate the predictions of anomaly-free dark matter models for direct and indirect detection experiments. We focus on gauge theories where the existence of a fermionic dark matter candidate is predicted by anomaly cancellation, its mass is defined by the new symmetry breaking scale, and its stability is guaranteed by a remnant symmetry after the breaking of the gauge symmetry. We find an upper bound on the symmetry breaking scale by applying the relic density and perturbative constraints. The anomaly-free property of the theories allows us to perform a full study of the gamma lines from dark matter annihilation. We investigate the correlation between predictions for final-state radia…

research product

Neutrino-dark matter connections in gauge theories

We discuss the connection between the origin of neutrino masses and the properties of dark matter candidates in the context of gauge extensions of the Standard Model. We investigate minimal gauge theories for neutrino masses where the neutrinos are predicted to be Dirac or Majorana fermions. We find that the upper bound on the effective number of relativistic species provides a strong constraint in the scenarios with Dirac neutrinos. In the context of theories where the lepton number is a local gauge symmetry spontaneously broken at the low scale, the existence of dark matter is predicted from the condition of anomaly cancellation. Applying the cosmological bound on the dark matter relic de…

research product