0000000000645984

AUTHOR

Jean-luc Perfettini

0000-0002-2427-2604

showing 2 related works from this author

AGuIX® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine.

2019

International audience; AGuIX® are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium chelates. This nanoparticle has been recently accepted in clinical trials in association with radiotherapy. This review will summarize the principal preclinical results that have led to first in man administration. No evidence of toxicity has been observed during regulatory toxicity tests on two animal species (rodents and monkeys). Biodistributions on different animal models have shown passive uptake in tumours due to enhanced permeability and retention effect combined with renal elimination of the nanoparticles after intravenous administration. High radiosensitizing effect has been obser…

Radiation-Sensitizing AgentsGadoliniummedicine.medical_treatmentGadolinium02 engineering and technologyReview ArticlePharmacologyTheranostic NanomedicineMice0302 clinical medicineMelanomaBrain NeoplasmsMelanomaGeneral Medicine[CHIM.MATE]Chemical Sciences/Material chemistry[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences021001 nanoscience & nanotechnology3. Good health[SDV.SP] Life Sciences [q-bio]/Pharmaceutical sciencesNuclear Medicine & Medical ImagingRadiology Nuclear Medicine and imagingHead and Neck Neoplasms030220 oncology & carcinogenesisToxicity/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being[SDV.IB]Life Sciences [q-bio]/Bioengineering0210 nano-technologyClinical Scienceschemistry.chemical_element[SDV.CAN]Life Sciences [q-bio]/CancerEnhanced permeability and retention effect03 medical and health sciences/dk/atira/pure/subjectarea/asjc/2700/2741SDG 3 - Good Health and Well-being[SDV.CAN] Life Sciences [q-bio]/CancerIn vivo[CHIM.ANAL]Chemical Sciences/Analytical chemistrymedicineAnimalsHumansRadiology Nuclear Medicine and imaging[SDV.IB] Life Sciences [q-bio]/Bioengineeringbusiness.industryCancermedicine.diseaseRadiation therapyClinical trialchemistryNanoparticlesbusinessForecasting
researchProduct

Caspase-dependent apoptosis during infection with Cryptosporidium parvum

1999

The protozoan parasite Cryptosporidium parvum causes persistent diarrhea and malnutrition in children and the diarrhea-wasting syndrome in AIDS. No therapy exists for eliminating the parasite in the absence of a healthy immune response. Although it had been reported that infection of intestinal cell lines with C. parvum leads to host cell death, the mechanisms of cytolysis have not been characterized. We show here that infection with C. parvum leads to typical apoptotic nuclear condensation and DNA fragmentation in host cells. Both nuclear condensation and DNA fragmentation are inhibited by a caspase inhibitor, showing that caspases are involved in this type of apoptosis. Finally, blocking …

Programmed cell deathImmunologyCryptosporidiosisApoptosisDNA FragmentationCysteine Proteinase InhibitorsMicrobiologyCaspase-Dependent ApoptosisAmino Acid Chloromethyl KetonesCell LineImmune systemparasitic diseasesAnimalsHumansComputingMilieux_MISCELLANEOUSCaspaseCryptosporidium parvumbiologybiology.organism_classificationCaspase InhibitorsVirologyCytolysisPOUVOIR PATHOGENE[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyInfectious DiseasesCryptosporidium parvumMicroscopy FluorescenceApoptosisCaspasesbiology.proteinDNA fragmentationHeLa CellsMicrobes and Infection
researchProduct