Transportation-cost inequality on path spaces with uniform distance
Abstract Let M be a complete Riemannian manifold and μ the distribution of the diffusion process generated by 1 2 ( Δ + Z ) where Z is a C 1 -vector field. When Ric − ∇ Z is bounded below and Z has, for instance, linear growth, the transportation-cost inequality with respect to the uniform distance is established for μ on the path space over M . A simple example is given to show the optimality of the condition.