0000000000646964
AUTHOR
S. Courtin
Structure of the As, Ge, Ga nuclei
Abstract The level structures of the N = 50 83As, 82Ge, and 81Ga isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA–PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the γ-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N = 50 shell closure in the region of 78Ni ( Z = 28 ). The comparison of the experimental level schemes with the shell-model calculations yields an N = 50 energy gap value of 4.7(3) MeV at Z = 28 . This value, in a good agreement with the prediction of the fini…
Backbending in the pear-shaped 223(90)Th nucleus: Evidence of a high-spin octupole to quadrupole shape transition in the actinides
International audience; Relatively neutron-rich thorium isotopes lie at the heart of a nuclear region of nuclei exhibiting octupole correlation effects. The detailed level structure of Th223 has been investigated in measurements of γ radiation following the fusion-evaporation channel of the Pb208(O18,3n)Th223 reaction at 85 MeV beam energy. The level structure has been extended up to spin 49/2, and 33 new γ rays have been added using triple-γ coincidence data. The spins and parities of the newly observed states have been confirmed by angular distribution ratios. In addition to the two known yrast bands based on a K=5/2 configuration, a non-yrast band has been established up to spin 35/2. We…
Intruder features in the island of inversion: The case of33Mg
The Na-33 beta decay was studied online using mass separation techniques and a first description of the level structure of the neutron-rich isotope Mg-33, with N=21, has been obtained. The experiment involved the measurement of beta-gamma, beta-gamma-gamma, and beta -n-gamma coincidences as well as neutron spectra by time-of-flight technique. The first low energy level scheme for the daughter nucleus Mg-33 is given with five bound states. Spin and parity assignments are proposed according to beta feedings and gamma -ray multipolarities, beta -strength distribution is evaluated, taking into account 1n- and 2n-emission channels and it is compared with the calculated GT strength distribution. …
Influence of fusion barrier distributions on spin populations
Abstract Heavy-ion fusion barrier distributions are now routinely obtained directly from experimental data. By measuring the total γ -ray multiplicity for the 58 Ni + 60 Ni system, which has a striking yet well understood barrier distribution, we show that some evidence of the barrier structures is present in the derived spin populations. In particular, very high spins can be populated at energies rather close to (and even below) the ‘nominal’ Coulomb barrier.
Beta-delayed neutron decay of 33Na
Abstract Beta-delayed neutron decay of 33 Na has been studied using the on-line mass separator ISOLDE. The delayed neutron spectra were measured by time-of-flight technique using fast scintillators. Two main neutron groups at 800(60) and 1020(80) keV were assigned to the 33 Na decay, showing evidence for strong feeding of states at about 4 MeV in 33 Mg. By simultaneous β–γ–n counting the delayed neutron emission probabilities P 1n =47(6)% and P 2n =13(3)% were determined. The half-life value for 33 Na, T 1/2 =8.0(3) ms , was measured by three different techniques, one employing identifying gamma transitions and two employing beta and neutron counting.
Intruder features in the island of inversion : The 33Mg case
The 33 Na β decay was studied online using mass separation techniques and a first description of the level structure of the neutron-rich isotope 33 Mg , with N = 21 , has been obtained. The experiment involved the measurement of β-γ, β-γ-γ, and β − n − γ coincidences as well as neutron spectra by time-of-flight technique. The first low energy level scheme for the daughter nucleus 33 Mg is given with five bound states. Spin and parity assignments are proposed according to β feedings and γ-ray multipolarities. β-strength distribution is evaluated, taking into account 1 n - and 2 n -emission channels and it is compared with the calculated GT strength distribution. In particular, the 1 p − 1 h …
A step further in the A = 33−35, N ≃ 21, island of inversion: the structure of 33Mg
Experimental indications have been found in the seventies for the deformation of neutron-rich A ≃ 32 nuclei [1]. This could be explained by Hartree-Fock calculations, predicting deformed configurations in the ground state of nuclei in the A = 33−35, N ≃ 21 mass region. This exotic region, called the island of inversion [2], knows a renewed interest since it can be now experimentally accessible for detailed studies.
Candidate superdeformed band in 28Si
Beta-decay half-lives at the N = 28 shell closure
Abstract Measurements of the beta-decay half-lives of neutron-rich nuclei (MgAr) in the vicinity of the N =28 shell closure are reported. Some 22 half-lives have been determined, 12 of which for the first time. Particular emphasis is placed on the results for the Si isotopes, the half-lives of which have been extended from N =25 to 28. Comparison with QRPA calculations suggests that 42 Si is strongly deformed. This is discussed in the light of a possible weakening of the spin–orbit potential.
Spin distributions at the Coulomb barrier in the $^{58}$Ni+$^{60}$Ni fusion reaction from gamma-ray multiplicity measurements
Abstract Heavy-ion fusion barrier distributions are now routinely obtained directly from experimental data. Measurements of the total γ-ray multiplicity for the fusion channels of the 58 Ni + 60 Ni system, which has striking yet well understood barrier structures, confirm the theoretical predictions that very high spins can be populated at energies close to (and even below) the nominal Coulomb barrier. The mapping from multiplicities to spin populations shows that structures in the barrier distribution are still evident in the γ-ray results.
Quasi-elastic reactions: an interplay of reaction dynamics and nuclear structure
Multinucleon transfer reactions have been investigated in 40Ar+208Pb with the Prisma+Clara set-up. The experimental differential cross sections of different neutron transfer channels have been obtained at three different angular settings taking into account the transmission through the spectrometer. The experimental yields of the excited states have been determined via particle-γ coincidences. In odd Ar isotopes, we reported a signif cant population of 11/2− states, reached via neutron transfer. Their structure matches a stretched conf guration of the valence neutron coupled to vibration quanta.
Study of the neutron-rich nuclei with $N$ = 21, $^{35}$Si and $^{33}$Mg, by beta decay of $^{35}$Al and $^{33}$Na
Abstract The first information on the level structure of the N =21 nuclei, 35 Si and 33 Mg, has been obtained by the beta decay study of 35 Al and 33 Na, produced by fragmentation of an UC target with 1.4 GeV protons at CERN/ISOLDE. The experimental technique involved β – γ , β – γ – γ , and β –n– γ coincidences, neutron spectra being obtained by time of flight measurements. Gamma detection was made either using large Ge counters or small BaF 2 scintillators (for lifetime measurements). In the case of the 35 Al decay, ( T 1/2 =41.6(2.2) ms), a simple structure has been found for the level scheme of 35 Si ( Z =14, N =21) which has been interpreted with the level sequence : 7/2 − , 3/2 − and …
Gamma-spectroscopy of the 199At nucleus with the recoil filter detector
The neutron deficient 199At nucleus has been studied in the 175Lu+28Si reaction at Eb= 141 MeV. In order to select events of interest in the presence of the very strong background caused by fission, γ-rays have been detected in coincidence with recoiling evaporation residues. The excited states of 199At observed for the first time may indicate that this nucleus is deformed.
Non-analog β decay of 74Rb
The magnitude of the Coulomb mixing parameter δ 1 has been experimentally deduced, for the first time, for the β decay of 74 Rb. The estimated magnitude is derived from the feeding of the non-analog first excited 0 + state in 74 Kr. The inferred upper limit of 0.07% is small compared to theoretical predictions. The half-life was measured to be 64.90(9) ms. 2001 Published by Elsevier Science B.V.