0000000000648271
AUTHOR
Robert Roth
Strain-induced improvement of retention loss in PbZr0.2Ti0.8O3 films
The retention behavior of nanoscale domains in PbZr0.2Ti0.8O3 thin films is investigated by in-situ controlling the epitaxial strain arising from a piezoelectric substrate. The retention behavior in our sample shows strong polarity-dependence: Upward-poled domains exhibit excellent stability, whereas downward-poled domains reveal a stretched exponential decay. Reversible release of in-plane compressive strain strongly reduced the retention loss, reflected in an enhancement of the relaxation time by up to one order of magnitude. We tentatively attribute the observed behavior to a strain dependence of the built-in field at the interface to the La0.7Sr0.3MnO3 bottom electrode, with a possible …
Role of Chiral Two-Body Currents in Li6 Magnetic Properties in Light of a New Precision Measurement with the Relative Self-Absorption Technique
A direct measurement of the decay width of the excited ${0}_{1}^{+}$ state of $^{6}\mathrm{Li}$ using the relative self-absorption technique is reported. Our value of ${\mathrm{\ensuremath{\Gamma}}}_{\ensuremath{\gamma},{0}_{1}^{+}\ensuremath{\rightarrow}{1}_{1}^{+}}=8.17(14{)}_{\mathrm{stat}.}(11{)}_{\mathrm{syst}.}\text{ }\text{ }\mathrm{eV}$ provides sufficiently low experimental uncertainties to test modern theories of nuclear forces. The corresponding transition rate is compared to the results of ab initio calculations based on chiral effective field theory that take into account contributions to the magnetic dipole operator beyond leading order. This enables a precision test of the im…