0000000000648694
AUTHOR
Kevin E. Smith
Electronic structure of single-crystal rocksalt CdO studied by soft x-ray spectroscopies andab initiocalculations
Soft x-ray emission spectroscopy (XES) and x-ray absorption spectroscopy (XAS) are employed to investigate the occupied and unoccupied electronic structures in rocksalt-phase single-crystal CdO. Resonant XES at the OK edge reveals a clear Cd 4d-O 2p hybridized peak and momentum-dependent coherent contributions to the resonant emission spectra. Good agreement is obtained between the above-threshold XES and XAS spectra, and the calculated O 2p local partial density of states (PDOS). Calculation of the O 2p PDOS was performed within the GW framework of many-body perturbation theory.
Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy
The electronic structure of well-ordered single-crystal thin films of CdO100 has been studied using angleresolved photoemission spectroscopy. Quantized electron subbands are observed above the valence-band maximum. The existence of these states provides evidence of an intrinsic electron accumulation space-charge layer near the CdO surface, an interpretation supported by coupled Poisson-Schrodinger calculations. The origin of the accumulation layer result is discussed in terms of the bulk band structure of CdO calculated using quasiparticle-corrected density-functional theory, which reveals that the conduction-band minimum at the Brillouin-zone center lies below the charge neutrality level.
Ab-Initio Studies of Electronic and Spectroscopic Properties of MgO, ZnO and CdO
We present ab-initio calculations of excited-state properties within single-particle and two-particle approaches in comparison with corresponding experimental results. For the theoretical treatment of the electronic structure, we compute eigenvalues and eigenfunctions by using a spatially nonlocal exchange-correlation potential. From this starting point, quasiparticle energies within the fully frequency-dependent G(0)W(0) approximation are obtained. By solving the Bethe-Salpeter equation, we evaluate optical properties, including the electron-hole attraction and the local-field effects. The results are compared with experimental spectra from soft X-ray emission, as well as from X-ray photoe…