0000000000648761

AUTHOR

Lennart Thomas Bach

Upwelled plankton community modulates surface bloom succession and nutrient availability in a natural plankton assemblage

Upwelling of nutrient-rich waters into the sunlit surface layer of the ocean supports high primary productivity in eastern boundary upwelling systems (EBUSs). However, subsurface waters contain not only macronutrients (N, P, Si) but also micronutrients, organic matter and seed microbial communities that may modify the response to macronutrient inputs via upwelling. These additional factors are often neglected when investigating upwelling impacts on surface ocean productivity. Here, we investigated how different components of upwelled water (macronutrients, organic nutrients and seed communities) drive the response of surface plankton communities to upwelling in the Peruvian coastal zone. Re…

research product

KOSMOS 2017 Peru Side Experiment: nutrients, phytoplankton abundances, enzyme rates, photophysiology

This data was collected during an short-term incubation experiment in March 2017 that investigated the response of a surface plankton community to upwelling. This experiment was carried in the framework of the SFB754-funded KOSMOS mesocosm study that took place in La Punta, Callao, Peru between February-April 2017. A total of six different treatments were used to disentangle chemical and biological characteristics of deep water that influence surface plankton blooms: 2 different deep water sources with different nutrient concentrations; 3 treatments to distinguish the effects of inorganic nutrients, organic nutrients and deep water microbial populations. Measured variables include inorganic…

research product

KOSMOS 2017 Peru mesocosm study: overview data

Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The production of organic material is fueled by upwelling of nutrient-rich deep waters and high incident light at the sea surface. However, biotic and abiotic factors can mod- ify surface production and related biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predic- tions of their future functioning requires understanding of the mechanisms driving the biogeochemical cycles therein. In this field experiment, we used in situ mesocosms as tools to improve our mechanistic understanding of processes con- trolling…

research product