0000000000649375

AUTHOR

Veronica De Rosa

Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses

Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) …

research product

Animal models of Multiple Sclerosis

Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which involves a complex interaction between immune system and neural cells. Animal modeling has been critical for addressing MS pathogenesis. The three most characterized animal models of MS are (1) the experimental autoimmune/allergic encephalomyelitis (EAE); (2) the virally-induced chronic demyelinating disease, known as Theiler׳s murine encephalomyelitis virus (TMEV) infection and (3) the toxin-induced demyelination. All these models, in a complementary way, have allowed to reach a good knowledge of the pathogenesis of MS. Specifically, EAE is the model which better reflects the autoimmu…

research product

Differential impact of high and low penetrance TNFRSF1A gene mutations on conventional and regulatory CD4+ T cell functions in TNFR1-associated periodic syndrome.

Abstract TNFR-associated periodic syndrome is an autoinflammatory disorder caused by autosomal-dominant mutations in TNFRSF1A, the gene encoding for TNFR superfamily 1A. The lack of knowledge in the field of TNFR-associated periodic syndrome biology is clear, particularly in the context of control of immune self-tolerance. We investigated how TNF-α/TNFR superfamily 1A signaling can affect T cell biology, focusing on conventional CD4+CD25− and regulatory CD4+CD25+ T cell functions in patients with TNFR-associated periodic syndrome carrying either high or low penetrance TNFRSF1A mutations. Specifically, we observed that in high penetrance TNFR-associated periodic syndrome, at the molecular le…

research product