0000000000649861

AUTHOR

William Shepherd

Dijets at Tevatron Cannot Constrain SMEFT Four-Quark Operators

We explore the sensitivity of Tevatron data to heavy new physics effects in differential dijet production rates using the SMEFT in light of the fact that consistent and conservative constraints from the LHC cannot cover relatively low cutoff scales in the EFT. In contrast to the results quoted by the experimental collaborations and other groups, we find that, once consistency of the perturbation expansion is enforced and reasonable estimates of theoretical errors induced by the SMEFT series in $\frac{E}{\Lambda}$ are included, there is no potential to constrain four-quark contact interactions using Tevatron data. This shows the general difficulty of constraining physics model-independently …

research product

Cuckoo's Eggs in Neutron Stars: Can LIGO Hear Chirps from the Dark Sector?

We explore in detail the possibility that gravitational wave signals from binary inspirals are affected by a new force that couples only to dark matter particles. We discuss the impact of both the new force acting between the binary partners as well as radiation of the force carrier. We identify numerous constraints on any such scenario, ultimately concluding that observable effects on the dynamics of binary inspirals due to such a force are not possible if the dark matter is accrued during ordinary stellar evolution. Constraints arise from the requirement that the astronomical body be able to collect and bind at small enough radius an adequate number of dark matter particles, from the requ…

research product

Jet substructure measurements of interference in non-interfering SMEFT effects

The tails of diboson production at the LHC are sensitive to the interference between Standard Model and higher dimension operators parameterizing the effects of heavy new physics. However, helicity selection rules for the diboson scattering amplitudes set an obstruction to the na\"ive interference contributions of dimension six operators, causing the total diboson rate correction's leading contribution to cancel. In this case, carefully measuring the azimuthal decay angles "resurrects" the interference, recouping sensitivity to the "non-interfering" operators. We explore these signatures in detail, and find that the EFT uncertainties associated with higher-dimensional operators are uniquely…

research product

Consistent Searches for SMEFT Effects in Non-Resonant Dilepton Events

Employing the framework of the Standard Model Effective Field Theory, we perform a detailed reinterpretation of measurements of the Weinberg angle in dilepton production as a search for new-physics effects. We truncate our signal prediction at order $1/\Lambda^2$, where $\Lambda$ denotes the new-physics mass scale, and introduce a theory error to account for unknown contributions of order $1/\Lambda^4$. Two linear combinations of four-fermion operators with distinct angular behavior contribute to dilepton production with growing impact at high energies. We define suitable angular observables and derive bounds on those two linear combinations using data from the Tevatron and the LHC. We find…

research product

Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for dark matter mediators in visible and invisible decay channels and calculations of the thermal relic density

Physics of the Dark Universe 26, 100377 (2019). doi:10.1016/j.dark.2019.100377

research product

Perturbative unitarity constraints on gauge portals

Abstract Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs and dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the uppe…

research product

Natural stabilization of the Higgs boson’s mass and alignment

Current data from the LHC indicate that the 125 GeV Higgs boson, $H$, is either the single Higgs of the Standard Model or, to a good approximation, an "aligned Higgs". We propose that $H$ is the pseudo-Goldstone dilaton of Gildener and Weinberg. Models based on their mechanism of scale symmetry breaking can naturally account for the Higgs boson's low mass and aligned couplings. We conjecture that they are the only way to achieve a "Higgslike dilaton" that is actually the Higgs boson. These models further imply the existence of additional Higgs bosons in the vicinity of 200 to about 550 GeV. We illustrate our proposal in a version of the two-Higgs-doublet model of Lee and Pilaftsis. Our vers…

research product

Perturbative Unitarity Constraints on Charged/Colored Portals

Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak or QCD phase transitions. This implies a new scale of physics and mediator particles needed to facilitate dark matter annihilations. In this work, we consider scenarios where thermal dark matter annihilates via scalar mediators that are colored and/or electrically charged. We show how partial wave unitarity places upper bounds on the masses and couplings on both the dark matter and mediators. To do this, we employ effective field theories with dark matter as well as three flavors of sleptons or squarks with minimum flavor violation. For Dirac (…

research product

Consistent searches for SMEFT effects in non-resonant dijet events

We investigate the bounds which can be placed on generic new-physics contributions to dijet production at the LHC using the framework of the Standard Model Effective Field Theory, deriving the first consistently-treated EFT bounds from non-resonant high-energy data. We recast an analysis searching for quark compositeness, equivalent to treating the SM with one higher-dimensional operator as a complete UV model. In order to reach consistent, model-independent EFT conclusions, it is necessary to truncate the EFT effects consistently at order $1/\Lambda^2$ and to include the possibility of multiple operators simultaneously contributing to the observables, neither of which has been done in prev…

research product