0000000000649884
AUTHOR
David Tesar
Effects of patch number and dispersal patterns on population dynamics and synchrony.
In this paper, we examine the effects of patch number and different dispersal patterns on dynamics of local populations and on the level of synchrony between them. Local population renewal is governed by the Ricker model and we also consider asymmetrical dispersal as well as the presence of environmental heterogeneity. Our results show that both population dynamics and the level of synchrony differ markedly between two and a larger number of local populations. For two patches different dispersal rules give very versatile dynamics. However, for a larger number of local populations the dynamics are similar irrespective of the dispersal rule. For example, for the parameter values yielding stab…
Environmental Variability and Semelparity vs. Iteroparity as Life Histories
Research on the evolution of life histories addresses the topic of fitness trade-offs between semelparity (reproducing once in a lifetime) and iteroparity (repeated reproductive bouts per lifetime). Bulmer (1994) derived the relationship v+P(A)<1 (P(A) is the adult survival;vb(S) and b(S) are the offspring numbers for iteroparous and semelparous breeding strategies, respectively), under which a resident semelparous population cannot be invaded by an iteroparous mutant when the underlying population dynamics are stable. We took Bulmer's population dynamics, and added noise in juvenile and adult survival and in offspring numbers. Long-term coexistence of the two strategies is possible in much…
Does evolution of iteroparous and semelparous reproduction call for spatially structured systems?
A persistent question in the evolution of life histories is the fitness trade-off between reproducing only once (semelparity) in a lifetime or reproducing repeated times in different seasons (iteroparity). The problem can be formulated into a research agenda by assuming that one reproductive strategy is resident (has already evolved) and by asking whether invasion (evolution) of an alternative reproductive strategy is possible. For a spatially nonstructured system, Bulmer (1994) derived the relationship v + PA1 (PA is adult survival; vbS and bS are offspring numbers for iteroparous and semelparous breeding strategies, respectively) at which semelparous population cannot be invaded by an ite…