0000000000650210
AUTHOR
Heiko Rieger
Low-energy fixed points of random Heisenberg models
The effect of quenched disorder on the low-energy and low-temperature properties of various two- and three-dimensional Heisenberg models is studied by a numerical strong disorder renormalization group method. For strong enough disorder we have identified two relevant fixed points, in which the gap exponent, omega, describing the low-energy tail of the gap distribution, P(Delta) ~ Delta^omega is independent of disorder, the strength of couplings and the value of the spin. The dynamical behavior of non-frustrated random antiferromagnetic models is controlled by a singlet-like fixed point, whereas for frustrated models the fixed point corresponds to a large spin formation and the gap exponent …
Antiferromagnetic Heisenberg chains with bond alternation and quenched disorder
We consider S=1/2 antiferromagnetic Heisenberg chains with alternating bonds and quenched disorder, which represents a theoretical model of the compound CuCl_{2x}Br_{2(1-x)}(\gamma-{pic})_2. Using a numerical implementation of the strong disorder renormalization group method we study the low-energy properties of the system as a function of the concentration, x, and the type of correlations in the disorder. For perfect correlation of disorder the system is in the random dimer (Griffiths) phase having a concentration dependent dynamical exponent. For weak or vanishing disorder correlations the system is in the random singlet phase, in which the dynamical exponent is formally infinity. We disc…