0000000000650351

AUTHOR

Kacper Bilko

Measurements of Low-Energy Protons using a Silicon Detector for Application to SEE Testing

A silicon detector with a fast electronics chain is used for the dosimetry of protons in the range 0.5-5 MeV at the Centro Nacional de Aceleradores (CNA) 3 MV Tandem laboratory in Seville, Spain. In this configuration, measurements can be performed in pulsed mode, using a digitizer to record event-by-event proton energy depositions. The distributions of deposited energy were obtained thanks to a calibration with an alpha source. Measurements of flux and deposited energy are used to enable single event effect (SEE) testing on selected static random access memories (SRAMs).

research product

SEU characterization of commercial and custom-designed SRAMs based on 90 nm technology and below

International audience; The R2E project at CERN has tested a few commercial SRAMs and a custom-designed SRAM, whose data are complementary to various scientific publications. The experimental data include low- and high-energy protons, heavy ions, thermal, intermediate- and high-energy neutrons, high-energy electrons and high-energy pions.

research product

0.1-10 MeV Neutron Soft Error Rate in Accelerator and Atmospheric Environments

Neutrons with energies between 0.1-10 MeV can significantly impact the Soft Error Rate (SER) in SRAMs manufactured in scaled technologies, with respect to high-energy neutrons. Their contribution is evaluated in accelerator, ground level and avionic (12 km of altitude) environments. Experimental cross sections were measured with monoenergetic neutrons from 144 keV to 17 MeV, and results benchmarked with Monte Carlo simulations. It was found that even 144 keV neutrons can induce upsets due to elastic scattering. Moreover, neutrons in the 0.1-10 MeV energy range can induce more than 60% of the overall upset rate in accelerator applications, while their contribution can exceed 18% in avionics.…

research product