0000000000650351

AUTHOR

Kacper Bilko

showing 3 related works from this author

Measurements of Low-Energy Protons using a Silicon Detector for Application to SEE Testing

2021

A silicon detector with a fast electronics chain is used for the dosimetry of protons in the range 0.5-5 MeV at the Centro Nacional de Aceleradores (CNA) 3 MV Tandem laboratory in Seville, Spain. In this configuration, measurements can be performed in pulsed mode, using a digitizer to record event-by-event proton energy depositions. The distributions of deposited energy were obtained thanks to a calibration with an alpha source. Measurements of flux and deposited energy are used to enable single event effect (SEE) testing on selected static random access memories (SRAMs).

protonitNuclear and High Energy PhysicspiiSilicon detectorMaterials sciencebusiness.industrySingle event effectskalibrointiLow energysäteilyfysiikkaNuclear Energy and EngineeringilmaisimetdosimetritOptoelectronicsSilicon detectorElectrical and Electronic EngineeringDetectors and Experimental TechniquesLow-energy protonsbusinessIEEE Transactions on Nuclear Science ( Volume: 69, Issue: 3, March 2022)
researchProduct

SEU characterization of commercial and custom-designed SRAMs based on 90 nm technology and below

2020

International audience; The R2E project at CERN has tested a few commercial SRAMs and a custom-designed SRAM, whose data are complementary to various scientific publications. The experimental data include low- and high-energy protons, heavy ions, thermal, intermediate- and high-energy neutrons, high-energy electrons and high-energy pions.

high-energy protonsCOTS[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]käyttömuistitNuclear TheoryElectronHardware_PERFORMANCEANDRELIABILITY01 natural sciences7. Clean energyIonelektroniikkakomponentitNuclear physicsCross section (physics)Pion0103 physical sciencesNeutronionisoimaton säteilyStatic random-access memory010306 general physicsheavy ionsNuclear Experimentlow-energy protonsPhysicsLarge Hadron Collidercross section010308 nuclear & particles physicsionisoiva säteilyelectronsneutronsmuistit (tietotekniikka)SRAMCharacterization (materials science)säteilyfysiikkapionsSEU
researchProduct

0.1-10 MeV Neutron Soft Error Rate in Accelerator and Atmospheric Environments

2021

Neutrons with energies between 0.1-10 MeV can significantly impact the Soft Error Rate (SER) in SRAMs manufactured in scaled technologies, with respect to high-energy neutrons. Their contribution is evaluated in accelerator, ground level and avionic (12 km of altitude) environments. Experimental cross sections were measured with monoenergetic neutrons from 144 keV to 17 MeV, and results benchmarked with Monte Carlo simulations. It was found that even 144 keV neutrons can induce upsets due to elastic scattering. Moreover, neutrons in the 0.1-10 MeV energy range can induce more than 60% of the overall upset rate in accelerator applications, while their contribution can exceed 18% in avionics.…

Nuclear and High Energy PhysicsprotonitMesonAstrophysics::High Energy Astrophysical Phenomenaparticle beamsMonte Carlo methodNuclear TheorykäyttömuistitCOTS SRAMAcceleratoraerospace electronicsSEU cross sections7. Clean energy01 natural sciencesUpsetelektroniikkakomponentitNuclear physicsavionicslife estimation0103 physical sciencesNeutronground-levelElectrical and Electronic EngineeringNuclear ExperimentRadiation hardeningmesonsavaruustekniikkaElastic scatteringPhysicsRange (particle radiation)protons010308 nuclear & particles physicsneutronsneutronitlow-energy neutronssensitivityAccelerators and Storage RingsMonte Carlo -menetelmätSoft errorNuclear Energy and Engineeringintermediate-energy neutronssäteilyfysiikka13. Climate action
researchProduct