6533b838fe1ef96bd12a522b
RESEARCH PRODUCT
0.1-10 MeV Neutron Soft Error Rate in Accelerator and Atmospheric Environments
Ralf NolteS. FioreGiulia BazzanoKacper BilkoE. PirovanoFrédéric WrobelRuben Garcia AliaMatteo CecchettoAndrea CononettiDavid Lucsanyisubject
Nuclear and High Energy PhysicsprotonitMesonAstrophysics::High Energy Astrophysical Phenomenaparticle beamsMonte Carlo methodNuclear TheorykäyttömuistitCOTS SRAMAcceleratoraerospace electronicsSEU cross sections7. Clean energy01 natural sciencesUpsetelektroniikkakomponentitNuclear physicsavionicslife estimation0103 physical sciencesNeutronground-levelElectrical and Electronic EngineeringNuclear ExperimentRadiation hardeningmesonsavaruustekniikkaElastic scatteringPhysicsRange (particle radiation)protons010308 nuclear & particles physicsneutronsneutronitlow-energy neutronssensitivityAccelerators and Storage RingsMonte Carlo -menetelmätSoft errorNuclear Energy and Engineeringintermediate-energy neutronssäteilyfysiikka13. Climate actiondescription
Neutrons with energies between 0.1-10 MeV can significantly impact the Soft Error Rate (SER) in SRAMs manufactured in scaled technologies, with respect to high-energy neutrons. Their contribution is evaluated in accelerator, ground level and avionic (12 km of altitude) environments. Experimental cross sections were measured with monoenergetic neutrons from 144 keV to 17 MeV, and results benchmarked with Monte Carlo simulations. It was found that even 144 keV neutrons can induce upsets due to elastic scattering. Moreover, neutrons in the 0.1-10 MeV energy range can induce more than 60% of the overall upset rate in accelerator applications, while their contribution can exceed 18% in avionics. The SER due to neutrons below 3 MeV, whose contribution has always been considered negligible, is found to be up to 44% of the total upsets in accelerator environments. These results have strong Radiation Hardness Assurance (RHA) implications for those environments with high fluxes of neutrons in the 0.1-10 MeV energy range. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2021-05-01 |