0000000000026524

AUTHOR

Frédéric Wrobel

showing 13 related works from this author

Dynamic Test Methods for COTS SRAMs

2014

International audience; In previous works, we have demonstrated the importance of dynamic mode testing of SRAM components under ionizing radiation. Several types of failures are difficult to expose when the device is tested under static (retention) mode. With the purpose of exploring and defining the most complete testing procedures and reveal the potential hazardous behaviors of SRAM devices, we present novel methods for the dynamic mode radiation testing of SRAMs. The proposed methods are based on different word address accessing schemes and data background: Fast Row, Fast Column, Pseudorandom, Adjacent (Gray) and Inverse Adjacent (Gray). These methods are evaluated by heavy ion and atmos…

Pseudorandom number generatorsingle event upset (SEU)Nuclear and High Energy Physicsta114ta213Computer scienceCOTSneutrons65 nmmultiple cell upset (MCU)SRAMColumn (database)[SPI.TRON]Engineering Sciences [physics]/ElectronicsRadiation testingNuclear Energy and EngineeringElectronic engineering90 nmHeavy ionStatic random-access memoryElectrical and Electronic Engineeringheavy ionsNeutron irradiationWord (computer architecture)dynamic testDynamic testingIEEE Transactions on Nuclear Science
researchProduct

Heavy-Ion Radiation Impact on a 4Mb FRAM under Different Test Conditions

2015

The impact of heavy-ions on commercial Ferroelectric Memories (FRAMs) is analyzed. The influence of different test modes (static and dynamic) on this memory is investigated. Static test results show that the memory is prone to temporary effects occurring in the peripheral circuitry. Dynamic tests results show a high sensitivity of this memory to heavy-ions.

Ionizing radiation[PHYS]Physics [physics]010302 applied physicsRandom access memoryMaterials scienceHeavy ion radiationta114ta213010308 nuclear & particles physics01 natural sciencestest conditions[SPI.TRON]Engineering Sciences [physics]/ElectronicsNon-volatile memoryMultiple Cell Upset (MCU)FRAM0103 physical sciencesStatic testingElectronic engineeringSensitivity (control systems)radiation testing130nmSingle Event Upset (SEU)static and dynamic mode testingSimulation
researchProduct

Direct Ionization Impact on Accelerator Mixed-Field Soft-Error Rate

2020

We investigate, through measurements and simulations, the possible direct ionization impact on the accelerator soft-error rate (SER), not considered in standard qualification approaches. Results show that, for a broad variety of state-of-the-art commercial components considered in the 65-16-nm technological range, indirect ionization is still expected to dominate the overall SER in the accelerator mixed-field. However, the derived critical charges of the most sensitive parts, corresponding to ~0.7 fC, are expected to be at the limit of rapid direct ionization dominance and soft-error increase.

PhysicsNuclear and High Energy PhysicsRange (particle radiation)Large Hadron ColliderField (physics)010308 nuclear & particles physicsMonte Carlo methodAccelerators and Storage Rings01 natural sciences7. Clean energyComputational physicsSoft errorNuclear Energy and EngineeringIonization0103 physical sciencesNeutronLimit (mathematics)Electrical and Electronic EngineeringIEEE Transactions on Nuclear Science
researchProduct

Heavy-Ion Radiation Impact on a 4 Mb FRAM Under Different Test Modes and Conditions

2016

International audience; The impact of heavy-ions on commercial Ferroelectric Memories (FRAMs) is analyzed. The influence of dynamic and static test modes as well as several stimuli on the error rate of this memory is investigated. Static test results show that the memory is prone to temporary effects occurring in the peripheral circuitry, with a possible effect due to fluence. Dynamic tests results show a high sensitivity of this memory to switching activity of this peripheral circuitry.

ImaginationNuclear and High Energy PhysicsHeavy ion radiationMaterials science130 nmmedia_common.quotation_subject[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesFluence[SPI]Engineering Sciences [physics]0103 physical sciencesStatic testingSensitivity (control systems)Electrical and Electronic Engineeringradiation testingSimulationmedia_common010302 applied physicssingle event upset (SEU)ta114ta213010308 nuclear & particles physicsbusiness.industrymultiple cell upset (MCU)FerroelectricityNon-volatile memoryRadiation testingFRAM130nm technologyNuclear Energy and EngineeringOptoelectronicsbusinessstatic and dynamic mode testingIEEE Transactions on Nuclear Science
researchProduct

A Methodology for the Analysis of Memory Response to Radiation through Bitmap Superposition and Slicing

2015

A methodology is proposed for the statistical analysis of memory radiation test data, with the aim of identifying trends in the single-even upset (SEU) distribution. The treated case study is a 65nm SRAM irradiated with neutrons, protons and heavy-ions.

Computer sciencebitmap slicingParallel computingHardware_PERFORMANCEANDRELIABILITYRadiationSlicingUpsetElectronic mailSuperposition principleStatic random-access memoryMemoriesstatic testNuclear Experimentdynamic testta114ta213computer.file_formatSRAMBitmap[SPI.TRON]Engineering Sciences [physics]/ElectronicsMultiple Cell Upset (MCU)MCUSERBitmapradiation testevent accumulationSingle Event Upset (SEU)AlgorithmcomputerSEUTest data
researchProduct

0.1-10 MeV Neutron Soft Error Rate in Accelerator and Atmospheric Environments

2021

Neutrons with energies between 0.1-10 MeV can significantly impact the Soft Error Rate (SER) in SRAMs manufactured in scaled technologies, with respect to high-energy neutrons. Their contribution is evaluated in accelerator, ground level and avionic (12 km of altitude) environments. Experimental cross sections were measured with monoenergetic neutrons from 144 keV to 17 MeV, and results benchmarked with Monte Carlo simulations. It was found that even 144 keV neutrons can induce upsets due to elastic scattering. Moreover, neutrons in the 0.1-10 MeV energy range can induce more than 60% of the overall upset rate in accelerator applications, while their contribution can exceed 18% in avionics.…

Nuclear and High Energy PhysicsprotonitMesonAstrophysics::High Energy Astrophysical Phenomenaparticle beamsMonte Carlo methodNuclear TheorykäyttömuistitCOTS SRAMAcceleratoraerospace electronicsSEU cross sections7. Clean energy01 natural sciencesUpsetelektroniikkakomponentitNuclear physicsavionicslife estimation0103 physical sciencesNeutronground-levelElectrical and Electronic EngineeringNuclear ExperimentRadiation hardeningmesonsavaruustekniikkaElastic scatteringPhysicsRange (particle radiation)protons010308 nuclear & particles physicsneutronsneutronitlow-energy neutronssensitivityAccelerators and Storage RingsMonte Carlo -menetelmätSoft errorNuclear Energy and Engineeringintermediate-energy neutronssäteilyfysiikka13. Climate action
researchProduct

Soft errors in commercial off-the-shelf static random access memories

2016

International audience; This article reviews state-of-the-art techniques for the evaluation of the effect of radiation on static random access memory (SRAM). We detailed irradiation test techniques and results from irradiation experiments with several types of particles. Two commercial SRAMs, in 90 and 65 nm technology nodes, were considered as case studies. Besides the basic static and dynamic test modes, advanced stimuli for the irradiation tests were introduced, as well as statistical post-processing techniques allowing for deeper analysis of the correlations between bit-flip cross-sections and design/architectural characteristics of the memory device. Further insight is provided on the …

ImaginationDynamic test modeComputer sciencemedia_common.quotation_subject01 natural sciencesParticle detector[SPI]Engineering Sciences [physics]0103 physical sciencesMaterials ChemistryElectronic engineeringStatic random-access memoryElectrical and Electronic EngineeringLayer (object-oriented design)Ionizing Particlesmedia_common010302 applied physics[PHYS]Physics [physics]010308 nuclear & particles physicsDetectorCondensed Matter PhysicsSRAMBit mappingElectronic Optical and Magnetic MaterialsStatic test modeMarch testParticle detectorCommercial off-the-shelfRandom accessDynamic testing
researchProduct

Real-Time SRAM Based Particle Detector

2015

International audience; Monitoring radiative environments is of great importance, especially for facilities hosting large particle accelerators and nuclear power plants. Such facilities make use of monitoring systems that are usually composed of different sensors to evaluate the intensity of the ambient radiation field in different locations. In this paper, we propose an SRAM-based monitor that works in dynamic mode (memory continuously accessed), according to data gathered by irradiating our sensor in several particle accelerator facilities. The dynamic mode of operation allows for real-time sensing, especially when the particle fluence is high. In order to ensure the efficiency of the det…

Physicsta114ta213DetectorParticle acceleratorSRAM7. Clean energyParticle detectorParticle acceleratorslaw.invention[SPI.TRON]Engineering Sciences [physics]/ElectronicslawElectronic engineeringRadiative transferRadiation monitoringParticleStatic random-access memoryParticle detectorIntensity (heat transfer)
researchProduct

SEE on Different Layers of Stacked-SRAMs

2015

International audience; This paper presents heavy-ion and proton radiation test results of a 90 nm COTS SRAM with stacked structure. Radiation tests were made using high penetration heavy-ion cocktails at the HIF (Belgium) and at RADEF (Finland) as well as low energy protons at RADEF. The heavy-ion SEU cross-section showed an unusual profile with a peak at the lowest LET (heavy-ion with the highest penetration range). The discrepancy is due to the fact that the SRAM is constituted of two vertically stacked dice. The impact of proton testing on the response of both stacked dice is presented. The results are discussed and the SEU cross-sections of the upper and lower layers are compared. The …

Nuclear and High Energy PhysicsSEE rateMaterials scienceProtonDiceRadiationLow energyProton radiation90 nmElectronic engineering90 nmStatic random-access memoryElectrical and Electronic Engineeringradiation testingstacked dice[PHYS]Physics [physics]single event upset (SEU)ta213ta114business.industrymultiple cell upset (MCU)SRAM[SPI.TRON]Engineering Sciences [physics]/ElectronicsRadiation testingNuclear Energy and EngineeringOptoelectronicsbusinessstatic and dynamic mode testingIEEE Transactions on Nuclear Science
researchProduct

Impact of Electrical Stress and Neutron Irradiation on Reliability of Silicon Carbide Power MOSFET

2020

International audience; The combined effects of electrical stress and neutron irradiation of the last generation of commercial discrete silicon carbide power MOSFETs are studied. The single-event burnout (SEB) sensitivity during neutron irradiation is analyzed for unstressed and electrically stressed devices. For surviving devices, a comprehensive study of the breakdown voltage degradation is performed by coupling the electrical stress and irradiation effects. In addition, mutual influences between electrical stress and radiative constraints are investigated through TCAD modeling.

Nuclear and High Energy PhysicsMaterials scienceRadiation effectsSilicon carbide[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Stress01 natural sciencesNeutron effectsSilicon carbide (SiC)Stress (mechanics)Semiconductor device modelschemistry.chemical_compoundMOSFETReliability (semiconductor)0103 physical sciencesMOSFETSilicon carbideBreakdown voltageSemiconductor device breakdownSilicon compoundsSingle Event BurnoutNeutronIrradiationElectrical and Electronic EngineeringPower MOSFETPower MOSFETComputingMilieux_MISCELLANEOUSElectric breakdownNeutrons[PHYS]Physics [physics]010308 nuclear & particles physicsbusiness.industryLogic gatesWide band gap semiconductorsSemiconductor device reliability[SPI.TRON]Engineering Sciences [physics]/ElectronicsNuclear Energy and Engineeringchemistry13. Climate actionSingle-event burnout (SEB)Atmospheric neutronsOptoelectronicsbusinessTechnology CAD (electronics)
researchProduct

Single-Event Effects in the Peripheral Circuitry of a Commercial Ferroelectric Random Access Memory

2018

International audience; This paper identifies the failure modes of a commercial 130-nm ferroelectric random access memory. The devices were irradiated with heavy-ion and pulsed focused X-ray beams. Various failure modes are observed, which generate characteristic error patterns, affecting isolated bits, words, groups of pages, and sometimes entire regions of the memory array. The underlying mechanisms are discussed.

Nuclear and High Energy PhysicsComputer sciencekäyttömuistit02 engineering and technologysingle-event effect01 natural sciencesMemory arrayElectronic mailX-ray0103 physical sciencesElectronic engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsElectrical and Electronic Engineeringstatic testComputingMilieux_MISCELLANEOUSdynamic testEvent (probability theory)Random access memoryta114ta213010308 nuclear & particles physicsbusiness.industrySEFImuistit (tietotekniikka)021001 nanoscience & nanotechnologyFerroelectricityheavy ionsingle-event upsetNon-volatile memoryFRAMsäteilyfysiikkaNuclear Energy and EngineeringSingle event upsetPhotonics0210 nano-technologybusinessIEEE Transactions on Nuclear Science
researchProduct

Investigation on MCU Clustering Methodologies for Cross-Section Estimation of RAMs

2015

International audience; Various failure scenarios may occur during irradiation testing of SRAMs, which may generate different characteristic Multiple Cell Upset (MCU) error patterns. This work proposes a method based on spatial and temporal criteria to identify them.

Nuclear and High Energy PhysicsEngineeringcomputer.software_genreUpsetCross section (physics)Static testingCluster of bit flipsStatic random-access memoryElectrical and Electronic Engineeringradiation testingstatic testCluster analysisdynamic test[PHYS]Physics [physics]single event upset (SEU)ta213ta114Cross sectionbusiness.industrySEFImultiple cell upset (MCU)SRAM[SPI.TRON]Engineering Sciences [physics]/ElectronicsRAMRadiation testingMicrocontrollerMCUNuclear Energy and EngineeringSEU clusterData miningbusinesscomputerDynamic testing
researchProduct

Methodologies for the Statistical Analysis of Memory Response to Radiation

2016

International audience; Methodologies are proposed for in-depth statistical analysis of Single Event Upset data. The motivation for using these methodologies is to obtain precise information on the intrinsic defects and weaknesses of the tested devices, and to gain insight on their failure mechanisms, at no additional cost. The case study is a 65 nm SRAM irradiated with neutrons, protons and heavy ions. This publication is an extended version of a previous study.

Nuclear and High Energy PhysicsEngineeringHardware_PERFORMANCEANDRELIABILITYRadiation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesstatistical analysis0103 physical sciencesStatic testingElectronic engineeringmemory responseStatistical analysisSensitivity (control systems)Static random-access memoryElectrical and Electronic Engineeringstatic testCluster of bit-flipsdynamic test010302 applied physicsSingle event upset SEURandom access memoryta114ta213010308 nuclear & particles physicsbusiness.industrymultiple cell upset (MCU)säteilySRAMReliability engineeringradiationNuclear Energy and EngineeringSingle event upsetradiation effectsbusiness[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Dynamic testing
researchProduct