0000000000075523

AUTHOR

Ruben Garcia Alia

Impact of Terrestrial Neutrons on the Reliability of SiC VD-MOSFET Technologies

Accelerated terrestrial neutron irradiations were performed on different commercial SiC power MOSFETs with planar, trench and double-trench architectures. The results were used to calculate the failure cross-sections and the failure in time (FIT) rates at sea level. Enhanced gate and drain leakage were observed in some devices which did not exhibit a destructive failure during the exposure. In particular, a different mechanism was observed for planar and trench gate MOSFETs, the first showing a partial gate rupture with a leakage path mostly between drain and gate, similar to what was previously observed with heavy-ions, while the second exhibiting a complete gate rupture. The observed fail…

research product

Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs

In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…

research product

Mechanisms of Electron-Induced Single-Event Latchup

In this paper, possible mechanisms by which electrons can induce single-event latchups in electronics are discussed. The energy deposition and the nuclear fragments created by electrons in silicon are analyzed in this context. The cross section enhancement effect in the presence of high-Z materials is discussed. First experimental results of electron-induced latchups are shown in static random access memory devices with low linear energy transfer thresholds. The radiation hardness assurance implications and future work are discussed.

research product

Assessment of Proton Direct Ionization for the Radiation Hardness Assurance of Deep Submicron SRAMs Used in Space Applications

Proton direct ionization from low-energy protons has been shown to have a potentially significant impact on the accuracy of prediction methods used to calculate the upset rates of memory devices in space applications for state-of-the-art deep sub-micron technologies. The general approach nowadays is to consider a safety margin to apply over the upset rate computed from high-energy proton and heavy ion experimental data. The data reported here present a challenge to this approach. Different upset rate prediction methods are used and compared in order to establish the impact of proton direct ionization on the total upset rate. No matter the method employed the findings suggest that proton dir…

research product

CERN IRRADIATION FACILITIES.

CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics.

research product

Direct Ionization Impact on Accelerator Mixed-Field Soft-Error Rate

We investigate, through measurements and simulations, the possible direct ionization impact on the accelerator soft-error rate (SER), not considered in standard qualification approaches. Results show that, for a broad variety of state-of-the-art commercial components considered in the 65-16-nm technological range, indirect ionization is still expected to dominate the overall SER in the accelerator mixed-field. However, the derived critical charges of the most sensitive parts, corresponding to ~0.7 fC, are expected to be at the limit of rapid direct ionization dominance and soft-error increase.

research product

High-Energy Electron-Induced SEUs and Jovian Environment Impact

We present experimental evidence of electron-induced upsets in a reference European Space Agency (ESA) single event upset (SEU) monitor, induced by a 200-MeV electron beam at the Very energetic Electronic facility for Space Planetary Exploration in harsh Radiation environments facility at CERN. Comparison of experimental cross sections and simulated cross sections is shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons, flash effects, and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. The ESA Jupiter Icy Moons Explorer mission, to be launched in 2022, presents a challenging radiat…

research product

Effects of Thermal Neutron Irradiation on a Self-Refresh DRAM

International audience; In this study, static and dynamic test methods were used to define the response of a self-refresh DRAM under thermal neutron irradiation. The neutron-induced failures were investigated and characterized by event cross-sections, soft-error rate and bitmaps evaluations, leading to an identification of permanent and temporarily stuck cells, block errors, and single-bit upsets.

research product

Radiation Hardness Assurance Through System-Level Testing: Risk Acceptance, Facility Requirements, Test Methodology, and Data Exploitation

International audience; Functional verification schemes at a level different from component-level testing are emerging as a cost-effective tool for those space systems for which the risk associated with a lower level of assurance can be accepted. Despite the promising potential, system-level radiation testing can be applied to the functional verification of systems under restricted intrinsic boundaries. Most of them are related to the use of hadrons as opposed to heavy ions. Hadrons are preferred for the irradiation of any bulky system, in general, because of their deeper penetration capabilities. General guidelines about the test preparation and procedure for a high-level radiation test ar…

research product

Measurements of Low-Energy Protons using a Silicon Detector for Application to SEE Testing

A silicon detector with a fast electronics chain is used for the dosimetry of protons in the range 0.5-5 MeV at the Centro Nacional de Aceleradores (CNA) 3 MV Tandem laboratory in Seville, Spain. In this configuration, measurements can be performed in pulsed mode, using a digitizer to record event-by-event proton energy depositions. The distributions of deposited energy were obtained thanks to a calibration with an alpha source. Measurements of flux and deposited energy are used to enable single event effect (SEE) testing on selected static random access memories (SRAMs).

research product

SEU characterization of commercial and custom-designed SRAMs based on 90 nm technology and below

International audience; The R2E project at CERN has tested a few commercial SRAMs and a custom-designed SRAM, whose data are complementary to various scientific publications. The experimental data include low- and high-energy protons, heavy ions, thermal, intermediate- and high-energy neutrons, high-energy electrons and high-energy pions.

research product

Heavy-Ion Microbeam Studies of Single-Event Leakage Current Mechanism in SiC VD-MOSFETs

Heavy-ion microbeams are employed for probing the radiation-sensitive regions in commercial silicon carbide (SiC) vertical double-diffused power (VD)-MOSFETs with micrometer accuracy. By scanning the beam spot over the die, a spatial periodicity was observed in the leakage current degradation, reflecting the striped structure of the power MOSFET investigated. Two different mechanisms were observed for degradation. At low drain bias (gate and source grounded), only the gate-oxide (at the JFET or neck region) is contributing in the ion-induced leakage current. For exposures at drain–source bias voltages higher than a specific threshold, additional higher drain leakage current is observed in t…

research product

0.1-10 MeV Neutron Soft Error Rate in Accelerator and Atmospheric Environments

Neutrons with energies between 0.1-10 MeV can significantly impact the Soft Error Rate (SER) in SRAMs manufactured in scaled technologies, with respect to high-energy neutrons. Their contribution is evaluated in accelerator, ground level and avionic (12 km of altitude) environments. Experimental cross sections were measured with monoenergetic neutrons from 144 keV to 17 MeV, and results benchmarked with Monte Carlo simulations. It was found that even 144 keV neutrons can induce upsets due to elastic scattering. Moreover, neutrons in the 0.1-10 MeV energy range can induce more than 60% of the overall upset rate in accelerator applications, while their contribution can exceed 18% in avionics.…

research product

Neutron-Induced Effects on a Self-Refresh DRAM

International audience; The field of radiation effects in electronics research includes unknowns for every new device, node size, and technical development. In this study, static and dynamic test methods were used to define the response of a self-refresh DRAM under neutron irradiation. The neutron-induced effects were investigated and characterised by event cross sections, soft-error rate, and bitmaps evaluations, leading to an identification of permanent and temporary stuck cells, single-bit upsets, and block errors. Block errors were identified in different patterns with dependency in the addressing order, leading to up to two thousand faulty words per event, representing a real threat fr…

research product

Analysis of the Photoneutron Field Near the THz Dump of the CLEAR Accelerator at CERN With SEU Measurements and Simulations

We study the radiation environment near the terahertz (THz) dump of the CERN Linear Electron Accelerator for Research (CLEAR) electron accelerator at CERN, using FLUktuierende KAskade in German (FLUKA) simulations and single-event upset (SEU) measurements taken with 32-Mbit Integrated Silicon Solution Inc. (ISSI) static random access memories (SRAMs). The main focus is on the characterization of the neutron field to evaluate its suitability for radiation tests of electronics in comparison with other irradiation facilities. Neutrons at CLEAR are produced via photonuclear reactions, mostly initiated by photons from the electromagnetic cascades that occur when the beam is absorbed by the dump …

research product

Mono-energetic electron induced single-event effects at the VESPER facility

We present experimental evidence of electron induced upsets in a reference ESA SEU monitor, the SEU based particle detector, induced by 200 MeV electron beam at the VESPER facility at CERN. Comparison of experimental cross sections and simulated cross sections are shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. Insight is given as to possible overall electron contribution to the upset rates in the Jovian radiation environment inside a typical spacecraft shielding are evaluated.

research product

The Pion Single-Event Effect Resonance and its Impact in an Accelerator Environment

International audience; The pion resonance in the nuclear reaction cross section is seen to have a direct impact on the single-event effect (SEE) cross section of modern electronic devices. This was experimentally observed for single-event upsets and single-event latchup. Rectangular parallelepiped (RPP) models built to fit proton data confirm the existence of the pion SEE cross-section resonance. The impact on current radiation hardness assurance (RHA) soft error rate (SER) predictions is, however, minimal for the accelerator environment since this is dominated by high neutron fluxes. The resonance is not seen to have a major impact on the high-energy hadron equivalence approximation estab…

research product

Heavy-ion induced single event effects and latent damages in SiC power MOSFETs

The advantages of silicon carbide (SiC) power MOSFETs make this technology attractive for space, avionics and high-energy accelerator applications. However, the current commercial technologies are still susceptible to Single Event Effects (SEEs) and latent damages induced by the radiation environment. Two types of latent damage were experimentally observed in commercial SiC power MOSFETs exposed to heavy-ions. One is observed at bias voltages just below the degradation onset and it involves the gate oxide. The other damage type is observed at bias voltages below the Single Event Burnout (SEB) limit, and it is attributed to alterations of the SiC crystal-lattice. Focused ion beam (FIB) and s…

research product

The Pion Single-Event Latch-Up Cross Section Enhancement: Mechanisms and Consequences for Accelerator Hardness Assurance

Pions make up a large part of the hadronic environment typical of accelerator mixed fields. Characterizing device cross sections against pions is usually disregarded in favor of tests with protons, whose single-event latch-up (SEL) cross section is, nonetheless, experimentally found to be lower than that of pions for all energies below 250 MeV. While Monte Carlo simulations are capable of reproducing such behavior, the reason for the observed pion cross-section enhancement can only be explained by a deeper analysis of the underlying mechanisms dominating proton–silicon and pion–silicon reactions. The mechanisms dominating the SEL response are found to vary with the energy under consideratio…

research product

Current Transport Mechanism for Heavy-Ion Degraded SiC MOSFETs

IEEE Transactions on Nuclear Science, 66 (7)

research product