6533b858fe1ef96bd12b5852
RESEARCH PRODUCT
The Pion Single-Event Effect Resonance and its Impact in an Accelerator Environment
Andrea CononettiWojtek HajdasArto JavanainenMatteo CecchettoFrédéric SaignéDaniel SoderstromRuben Garcia Aliasubject
Nuclear reactionProtonNuclear Theoryresonance: effectSingle event upsets01 natural sciences7. Clean energyResonance (particle physics)nuclear reactionelektroniikkakomponentitradiation hardness assurance (RHA)Detectors and Experimental TechniquesNuclear Experimentradiation: damagePhysicsLarge Hadron Colliderprotonscross sectionMesonsneutronitRandom access memorySEELarge Hadron Colliderpionsn: fluxNuclear and High Energy PhysicsprotonitMesonaccelerator[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]RHAsoft error ratesoft error rate (SER)hiukkaskiihdyttimetNuclear physicsFLUKACross section (physics)hiukkasetPion0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Electrical and Electronic Engineeringpi: interactionsingle-event effect (SEE)Neutrons010308 nuclear & particles physicsneutronsAccelerators and Storage RingsParticle beamsNuclear Energy and Engineeringsäteilyfysiikkahadrondescription
International audience; The pion resonance in the nuclear reaction cross section is seen to have a direct impact on the single-event effect (SEE) cross section of modern electronic devices. This was experimentally observed for single-event upsets and single-event latchup. Rectangular parallelepiped (RPP) models built to fit proton data confirm the existence of the pion SEE cross-section resonance. The impact on current radiation hardness assurance (RHA) soft error rate (SER) predictions is, however, minimal for the accelerator environment since this is dominated by high neutron fluxes. The resonance is not seen to have a major impact on the high-energy hadron equivalence approximation established for testing in mixed-field facilities.
year | journal | country | edition | language |
---|---|---|---|---|
2020-07-01 | IEEE Transactions on Nuclear Science |