0000000000026525
AUTHOR
Frédéric Saigné
Dynamic Test Methods for COTS SRAMs
International audience; In previous works, we have demonstrated the importance of dynamic mode testing of SRAM components under ionizing radiation. Several types of failures are difficult to expose when the device is tested under static (retention) mode. With the purpose of exploring and defining the most complete testing procedures and reveal the potential hazardous behaviors of SRAM devices, we present novel methods for the dynamic mode radiation testing of SRAMs. The proposed methods are based on different word address accessing schemes and data background: Fast Row, Fast Column, Pseudorandom, Adjacent (Gray) and Inverse Adjacent (Gray). These methods are evaluated by heavy ion and atmos…
Heavy-Ion Radiation Impact on a 4Mb FRAM under Different Test Conditions
The impact of heavy-ions on commercial Ferroelectric Memories (FRAMs) is analyzed. The influence of different test modes (static and dynamic) on this memory is investigated. Static test results show that the memory is prone to temporary effects occurring in the peripheral circuitry. Dynamic tests results show a high sensitivity of this memory to heavy-ions.
Assessment of Proton Direct Ionization for the Radiation Hardness Assurance of Deep Submicron SRAMs Used in Space Applications
Proton direct ionization from low-energy protons has been shown to have a potentially significant impact on the accuracy of prediction methods used to calculate the upset rates of memory devices in space applications for state-of-the-art deep sub-micron technologies. The general approach nowadays is to consider a safety margin to apply over the upset rate computed from high-energy proton and heavy ion experimental data. The data reported here present a challenge to this approach. Different upset rate prediction methods are used and compared in order to establish the impact of proton direct ionization on the total upset rate. No matter the method employed the findings suggest that proton dir…
Heavy-Ion Radiation Impact on a 4 Mb FRAM Under Different Test Modes and Conditions
International audience; The impact of heavy-ions on commercial Ferroelectric Memories (FRAMs) is analyzed. The influence of dynamic and static test modes as well as several stimuli on the error rate of this memory is investigated. Static test results show that the memory is prone to temporary effects occurring in the peripheral circuitry, with a possible effect due to fluence. Dynamic tests results show a high sensitivity of this memory to switching activity of this peripheral circuitry.
Radiation Hardness Assurance Through System-Level Testing: Risk Acceptance, Facility Requirements, Test Methodology, and Data Exploitation
International audience; Functional verification schemes at a level different from component-level testing are emerging as a cost-effective tool for those space systems for which the risk associated with a lower level of assurance can be accepted. Despite the promising potential, system-level radiation testing can be applied to the functional verification of systems under restricted intrinsic boundaries. Most of them are related to the use of hadrons as opposed to heavy ions. Hadrons are preferred for the irradiation of any bulky system, in general, because of their deeper penetration capabilities. General guidelines about the test preparation and procedure for a high-level radiation test ar…
A Methodology for the Analysis of Memory Response to Radiation through Bitmap Superposition and Slicing
A methodology is proposed for the statistical analysis of memory radiation test data, with the aim of identifying trends in the single-even upset (SEU) distribution. The treated case study is a 65nm SRAM irradiated with neutrons, protons and heavy-ions.
Soft errors in commercial off-the-shelf static random access memories
International audience; This article reviews state-of-the-art techniques for the evaluation of the effect of radiation on static random access memory (SRAM). We detailed irradiation test techniques and results from irradiation experiments with several types of particles. Two commercial SRAMs, in 90 and 65 nm technology nodes, were considered as case studies. Besides the basic static and dynamic test modes, advanced stimuli for the irradiation tests were introduced, as well as statistical post-processing techniques allowing for deeper analysis of the correlations between bit-flip cross-sections and design/architectural characteristics of the memory device. Further insight is provided on the …
The Pion Single-Event Effect Resonance and its Impact in an Accelerator Environment
International audience; The pion resonance in the nuclear reaction cross section is seen to have a direct impact on the single-event effect (SEE) cross section of modern electronic devices. This was experimentally observed for single-event upsets and single-event latchup. Rectangular parallelepiped (RPP) models built to fit proton data confirm the existence of the pion SEE cross-section resonance. The impact on current radiation hardness assurance (RHA) soft error rate (SER) predictions is, however, minimal for the accelerator environment since this is dominated by high neutron fluxes. The resonance is not seen to have a major impact on the high-energy hadron equivalence approximation estab…
Real-Time SRAM Based Particle Detector
International audience; Monitoring radiative environments is of great importance, especially for facilities hosting large particle accelerators and nuclear power plants. Such facilities make use of monitoring systems that are usually composed of different sensors to evaluate the intensity of the ambient radiation field in different locations. In this paper, we propose an SRAM-based monitor that works in dynamic mode (memory continuously accessed), according to data gathered by irradiating our sensor in several particle accelerator facilities. The dynamic mode of operation allows for real-time sensing, especially when the particle fluence is high. In order to ensure the efficiency of the det…
SEE on Different Layers of Stacked-SRAMs
International audience; This paper presents heavy-ion and proton radiation test results of a 90 nm COTS SRAM with stacked structure. Radiation tests were made using high penetration heavy-ion cocktails at the HIF (Belgium) and at RADEF (Finland) as well as low energy protons at RADEF. The heavy-ion SEU cross-section showed an unusual profile with a peak at the lowest LET (heavy-ion with the highest penetration range). The discrepancy is due to the fact that the SRAM is constituted of two vertically stacked dice. The impact of proton testing on the response of both stacked dice is presented. The results are discussed and the SEU cross-sections of the upper and lower layers are compared. The …
The Pion Single-Event Latch-Up Cross Section Enhancement: Mechanisms and Consequences for Accelerator Hardness Assurance
Pions make up a large part of the hadronic environment typical of accelerator mixed fields. Characterizing device cross sections against pions is usually disregarded in favor of tests with protons, whose single-event latch-up (SEL) cross section is, nonetheless, experimentally found to be lower than that of pions for all energies below 250 MeV. While Monte Carlo simulations are capable of reproducing such behavior, the reason for the observed pion cross-section enhancement can only be explained by a deeper analysis of the underlying mechanisms dominating proton–silicon and pion–silicon reactions. The mechanisms dominating the SEL response are found to vary with the energy under consideratio…
Impact of Electrical Stress and Neutron Irradiation on Reliability of Silicon Carbide Power MOSFET
International audience; The combined effects of electrical stress and neutron irradiation of the last generation of commercial discrete silicon carbide power MOSFETs are studied. The single-event burnout (SEB) sensitivity during neutron irradiation is analyzed for unstressed and electrically stressed devices. For surviving devices, a comprehensive study of the breakdown voltage degradation is performed by coupling the electrical stress and irradiation effects. In addition, mutual influences between electrical stress and radiative constraints are investigated through TCAD modeling.
Single-Event Effects in the Peripheral Circuitry of a Commercial Ferroelectric Random Access Memory
International audience; This paper identifies the failure modes of a commercial 130-nm ferroelectric random access memory. The devices were irradiated with heavy-ion and pulsed focused X-ray beams. Various failure modes are observed, which generate characteristic error patterns, affecting isolated bits, words, groups of pages, and sometimes entire regions of the memory array. The underlying mechanisms are discussed.
Investigation on MCU Clustering Methodologies for Cross-Section Estimation of RAMs
International audience; Various failure scenarios may occur during irradiation testing of SRAMs, which may generate different characteristic Multiple Cell Upset (MCU) error patterns. This work proposes a method based on spatial and temporal criteria to identify them.
Methodologies for the Statistical Analysis of Memory Response to Radiation
International audience; Methodologies are proposed for in-depth statistical analysis of Single Event Upset data. The motivation for using these methodologies is to obtain precise information on the intrinsic defects and weaknesses of the tested devices, and to gain insight on their failure mechanisms, at no additional cost. The case study is a 65 nm SRAM irradiated with neutrons, protons and heavy ions. This publication is an extended version of a previous study.
Proton Direct Ionization Upsets at Tens of MeV
Experimental monoenergetic proton single-event upset (SEU) cross sections of a 65-nm low core-voltage static random access memory (SRAM) were found to be exceptionally high not only at low energies ($ 3 MeV and extending up to tens of MeV. The SEU cross Section from 20-MeV protons exceeds the 200-MeV proton SEU cross Section by almost a factor of 3. Similarly, monoenergetic neutron cross sections at 14 MeV are about a factor of 3 lower than the 20-MeV proton cross section. Because of Monte Carlo (MC) simulations, it was determined that this strong enhancement is due to the proton direct ionization process as opposed to the elastic and inelastic scattering processes that dominate the SEU res…