6533b833fe1ef96bd129b983
RESEARCH PRODUCT
Heavy-Ion Microbeam Studies of Single-Event Leakage Current Mechanism in SiC VD-MOSFETs
Thomas ZiemannKay-obbe VossRuben Garcia AliaArto JavanainenRoger StarkCorinna MartinellaYacine KadiAlexander TsibizovUlrike Grossnersubject
Nuclear and High Energy PhysicsMaterials sciencemicrobeamsilicon carbide (SiC) vertical double-diffused power(VD)-MOSFETleakage current degradation01 natural sciencesDie (integrated circuit)chemistry.chemical_compoundpuolijohteet0103 physical sciencesMOSFETSilicon carbideNuclear Physics - ExperimentPower semiconductor deviceElectrical and Electronic EngineeringPower MOSFETsingle-event effect (SEE)010308 nuclear & particles physicsbusiness.industryionisoiva säteilyHeavy ion; leakage current degradation; microbeam; silicon carbide (SiC) vertical double-diffused power(VD)-MOSFET; single-event effect (SEE); single-event leakage current (SELC)JFETSELCMicrobeamSiC VD-MOSFET620single event effectsäteilyfysiikkaNuclear Energy and Engineeringchemistryheavy-ionOptoelectronicsddc:620Heavy ionbusinesssingle-event leakage current (SELC)Voltagedescription
Heavy-ion microbeams are employed for probing the radiation-sensitive regions in commercial silicon carbide (SiC) vertical double-diffused power (VD)-MOSFETs with micrometer accuracy. By scanning the beam spot over the die, a spatial periodicity was observed in the leakage current degradation, reflecting the striped structure of the power MOSFET investigated. Two different mechanisms were observed for degradation. At low drain bias (gate and source grounded), only the gate-oxide (at the JFET or neck region) is contributing in the ion-induced leakage current. For exposures at drain–source bias voltages higher than a specific threshold, additional higher drain leakage current is observed in the p-n junction region. This provides useful insights into the understanding of basic phenomena of single-event effects in SiC power devices.
year | journal | country | edition | language |
---|---|---|---|---|
2020-07-01 |