Isotopic Enriched and Natural SiC Junction Barrier Schottky Diodes Under Heavy Ion Irradiation
The radiation tolerance of isotopic enriched and natural silicon carbide junction barrier Schottky diodes are compared under heavy ion irradiation. Both types of devices experience leakage current degradation as well as single-event burnout events. The results were comparable, although the data may indicate a marginally lower thresholds for the isotopic enriched devices at lower linear energy transfer (LET). Slightly higher reverse bias threshold values for leakage current degradation were also observed compared to previously published work.
Heavy-Ion-Induced Defects in Degraded SiC Power MOSFETs
Cathodoluminescence spectroscopy is used to investigate the formation of point- and extended defects in SiC power MOSFETs exposed to heavy-ions. Devices showing single event leakage current (SELC) effects are analysed and compared to pristine samples. Common luminescence peaks of defect centers localized in the thermal-SiO2 are identified, together with peaks at the characteristic wavelength of extended defects.
Heavy-Ion Microbeam Studies of Single-Event Leakage Current Mechanism in SiC VD-MOSFETs
Heavy-ion microbeams are employed for probing the radiation-sensitive regions in commercial silicon carbide (SiC) vertical double-diffused power (VD)-MOSFETs with micrometer accuracy. By scanning the beam spot over the die, a spatial periodicity was observed in the leakage current degradation, reflecting the striped structure of the power MOSFET investigated. Two different mechanisms were observed for degradation. At low drain bias (gate and source grounded), only the gate-oxide (at the JFET or neck region) is contributing in the ion-induced leakage current. For exposures at drain–source bias voltages higher than a specific threshold, additional higher drain leakage current is observed in t…
Heavy-ion induced single event effects and latent damages in SiC power MOSFETs
The advantages of silicon carbide (SiC) power MOSFETs make this technology attractive for space, avionics and high-energy accelerator applications. However, the current commercial technologies are still susceptible to Single Event Effects (SEEs) and latent damages induced by the radiation environment. Two types of latent damage were experimentally observed in commercial SiC power MOSFETs exposed to heavy-ions. One is observed at bias voltages just below the degradation onset and it involves the gate oxide. The other damage type is observed at bias voltages below the Single Event Burnout (SEB) limit, and it is attributed to alterations of the SiC crystal-lattice. Focused ion beam (FIB) and s…
Current Transport Mechanism for Heavy-Ion Degraded SiC MOSFETs
IEEE Transactions on Nuclear Science, 66 (7)