6533b85cfe1ef96bd12bc0d7

RESEARCH PRODUCT

Heavy-ion induced single event effects and latent damages in SiC power MOSFETs

K. NiskanenPhilipp NatzkeArto JavanainenArto JavanainenHeikki KettunenCorinna MartinellaCorinna MartinellaCorinna MartinellaAlexander TsibizovMikko RossiJukka JaatinenYacine KadiUlrike GrossnerRuben Garcia Alia

subject

Materials scienceScanning electron microscopeRadiationFocused ion beamelektroniikkakomponentitIonSEEschemistry.chemical_compoundstomatognathic systempuolijohteetGate oxideSilicon carbideSiC MOSFETsHeavy-ionDetectors and Experimental TechniquesElectrical and Electronic EngineeringPower MOSFETSafety Risk Reliability and Qualitybusiness.industryionisoiva säteilyCondensed Matter PhysicsLatent damageAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialssäteilyfysiikkachemistrytransistoritOptoelectronicsSiC MOSFETs; Heavy-ion; Latent damage; SEEsbusinessVoltage

description

The advantages of silicon carbide (SiC) power MOSFETs make this technology attractive for space, avionics and high-energy accelerator applications. However, the current commercial technologies are still susceptible to Single Event Effects (SEEs) and latent damages induced by the radiation environment. Two types of latent damage were experimentally observed in commercial SiC power MOSFETs exposed to heavy-ions. One is observed at bias voltages just below the degradation onset and it involves the gate oxide. The other damage type is observed at bias voltages below the Single Event Burnout (SEB) limit, and it is attributed to alterations of the SiC crystal-lattice. Focused ion beam (FIB) and scanning electron microscopy (SEM) were used to investigate the damage site. Finally, a summary of the different types of damage induced by the heavy ion in SiC MOSFETs is given as a function of the ion LET and operational bias.

https://doi.org/10.1016/j.microrel.2021.114423