0000000000115862

AUTHOR

Mikko Rossi

Advanced time-stamped total data acquisition control front-end for MeV ion beam microscopy and proton beam writing

Many ion-matter interactions exhibit [email protected] time dependences such as, fluorophore emission quenching and ion beam induced charge (IBIC). Conventional event-mode MeV ion microbeam data acquisition systems discard the time information. Here we describe a fast time-stamping data acquisition front-end based on the concurrent processing capabilities of a Field Programmable Gate Array (FPGA). The system is intended for MeV ion microscopy and MeV ion beam lithography. The speed of the system (>240,000 events s^-^1 for four analogue to digital converters (ADC)) is limited by the ADC throughput and data handling speed of the host computer.

research product

Results on radiation hardness of black silicon induced junction photodetectors from proton and electron radiation

Abstract The stability of black silicon induced junction photodetectors under high-energy irradiation was tested with 11 MeV protons and 12 MeV electrons using fluence of 1 ⋅ 10 10 protons/cm2 and dose of 67 krad(Si) for protons and electrons, respectively. The energies and dose levels were selected to test radiation levels relevant for space applications. The degradation was evaluated through dark current and external quantum efficiency changes during (within 1 h after each step) and after (some days after) full irradiation sequences. Furthermore, the black silicon photodetectors were compared to planar silicon induced junction and planar silicon pn-junction photodetectors to assess the co…

research product

Semi-Empirical Model for SEGR Prediction

The underlying physical mechanisms in single event gate rupture (SEGR) are not known precisely. SEGR is expected to occur when the energy deposition due to a heavy ion strike exceeds a certain threshold simultaneously with sufficient electric field across the gate dielectric. Typically the energy deposition is described by using the linear energy transfer (LET) of the given ion. Previously the LET has been demonstrated not to describe the SEGR sufficiently. The work presented here introduces a semi-empirical model for the SEGR prediction based on statistical variations in the energy deposition which are described theoretically.

research product

SEGR in SiO<inf>2</inf>-Si<inf>3</inf>N<inf>4</inf> stacks

research product

Energy-loss straggling of 2-10 MeV/u Kr ions in gases

Measurements have been performed on a time-of-flight setup at the Jyväskylä K130 cyclotron, aiming at energy-loss straggling of heavy ions in gases. Theoretical predictions based on recently developed theory as well as an empirical interpolation formula predict that straggling can be more than ten times higher than Bohr straggling in the MeV/u regime. Our measurements with up to 9.3 MeV/u Kr ions on He, N2, Ne and Kr targets confirm this feature. Our calculations show the relative contributions of linear straggling, bunching including packing, and charge exchange. Our results for stopping cross sections are compatible with values from the literature. Funding Agencies|EU||Academy of Finland …

research product

Energy loss and straggling of MeV Si ions in gases

We present measurements of energy loss and straggling of Si ions in gases. An energy range from 0.5 to 12 MeV/u was covered using the 6 MV EN tandem accelerator at ETH Zurich, Switzerland, and the K130 cyclotron accelerator facility at the University of Jyväskylä, Finland. Our energy-loss data compare well with calculation based on the SRIM and PASS code. The new straggling measurements support a pronounced peak in He gas at around 4 MeV/u predicted by recent theoretical calculations. The straggling curve structure in the other gases (N2, Ne, Ar, Kr) is relatively flat in the covered energy range. Although there is a general agreement between the straggling data and the theoretical calculat…

research product

SEU characterization of commercial and custom-designed SRAMs based on 90 nm technology and below

International audience; The R2E project at CERN has tested a few commercial SRAMs and a custom-designed SRAM, whose data are complementary to various scientific publications. The experimental data include low- and high-energy protons, heavy ions, thermal, intermediate- and high-energy neutrons, high-energy electrons and high-energy pions.

research product

Time-of-flight - Energy spectrometer for elemental depth profiling - Jyväskylä design

Abstract A new time-of-flight elastic recoil detection spectrometer has been built, and initially the main effort was focused in getting good timing resolution and high detection efficiency for light elements. With the ready system, a 154 ps timing resolution was recorded for scattered 4.8 MeV 4 He 2+ ions. The hydrogen detection efficiency was from 80% to 20% for energies from 100 keV to 1 MeV, respectively, and this was achieved by having an additional atomic layer deposited Al 2 O 3 coating on the first timing detector’s carbon foil. The data acquisition system utilizes an FPGA-card to time-stamp every time-of-flight and energy event with 25 ns resolution. The different origins of the ba…

research product

SEGR in SiO${}_2$–Si$_3$N$_4$ Stacks

Abstract. This work presents experimental Single Event Gate Rupture (SEGR) data for Metal–Insulator–Semiconductor (MIS) devices, where the gate dielectrics are made of stacked SiO2–Si3N4 structures. A semi-empirical model for predicting the critical gate voltage in these structures under heavy-ion exposure is first proposed. Then interrelationship between SEGR cross- section and heavy-ion induced energy deposition probability in thin dielectric layers is discussed. Qualitative connection between the energy deposition in the dielectric and the SEGR is proposed. peerReviewed

research product

Proton Direct Ionization in Sub-Micron Technologies : Test Methodologies and Modelling

Two different low energy proton (LEP) test methods, one with quasi-monoenergetic and the other with very wide proton beam energy spectra, have been studied. The two test methodologies have been applied to devices that were suggested from prior heavy-ion tests to be sensitive to proton direct ionization (PDI). The advantages and disadvantages of the two test methods are discussed. The test method using quasi-monoenergetic beams requires device preparation and high energy resolution beams, but delivers results that can be interpreted directly and can be used in various soft error rate (SER) calculation methods. The other method, using a heavily degraded high energy proton beam, requires littl…

research product

A Methodology for the Analysis of Memory Response to Radiation through Bitmap Superposition and Slicing

A methodology is proposed for the statistical analysis of memory radiation test data, with the aim of identifying trends in the single-even upset (SEU) distribution. The treated case study is a 65nm SRAM irradiated with neutrons, protons and heavy-ions.

research product

Development of the Jyväskylä microbeam facility

Abstract A new microbeam facility is being constructed at the 1.7 MV Pelletron Accelerator in Jyvaskyla. The facility is designed for easy upgrading and incorporates a number of innovative features. Initially, it is based on a Heidelberg doublet with a design capability of a 3 × 5 μm beamspot at PIXE intensities and later upgraded to nanobeam performance. A thermal-expansion compensated rigid frame mounted on a mechanically isolated floor section is used to support the ion optical components. A compact-post focusing electrostatic deflector is used for high linearity beam scanning. This together with a novel time-stamped data collection (TDC) allows dynamic effects in IBIC, fluorescence blea…

research product

Depth profiling of Al2O3+ TiO2 nanolaminates by means of a time-of-flight energy spectromete

Atomic layer deposition (ALD) is currently a widespread method to grow conformal thin films with a sub-nm thickness control. By using ALD for nanolaminate oxides, it is possible to fine tune the electrical, optical and mechanical properties of thin films. In this study the elemental depth profiles and surface roughnesses were determined for Al2O3 + TiO2 nanolaminates with nominal single-layer thicknesses of 1, 2, 5, 10 and 20 nm and total thickness between 40 nm and 60 nm. The depth profiles were measured by means of a time-of-flight elastic recoil detection analysis (ToF-ERDA) spectrometer recently installed at the University of Jyväskylä. In TOF-E measurements 63Cu, 35Cl, 12C and 4He ions…

research product

Energy loss measurement of protons in liquid water

The proton stopping power of liquid water was, for the first time, measured in the energy range 4.7-15.2 MeV. The proton energies were determined by the time-of-flight transmission technique with the microchannel plate detectors, which were especially developed for timing applications. The results are compared to the literature values (from ICRU Report 49 (1993) and Janni's tabulation (1982 At. Data Nucl. Data Tables 27 147-339)) which are based on Bethe's formula and an agreement is found within the experimental uncertainty of 4.6%. Thus, earlier reported discrepancy between the experimental and literature stopping power values at lower energies was not observed at the energies considered …

research product

Heavy-ion induced single event effects and latent damages in SiC power MOSFETs

The advantages of silicon carbide (SiC) power MOSFETs make this technology attractive for space, avionics and high-energy accelerator applications. However, the current commercial technologies are still susceptible to Single Event Effects (SEEs) and latent damages induced by the radiation environment. Two types of latent damage were experimentally observed in commercial SiC power MOSFETs exposed to heavy-ions. One is observed at bias voltages just below the degradation onset and it involves the gate oxide. The other damage type is observed at bias voltages below the Single Event Burnout (SEB) limit, and it is attributed to alterations of the SiC crystal-lattice. Focused ion beam (FIB) and s…

research product

Determination of electronic stopping powers of 0.05–1MeV/u 131Xe ions in C-, Ni- and Au-absorbers with calorimetric low temperature detectors

Abstract A new experimental system for precise determination of electronic stopping powers of heavy ions has been set up at the accelerator laboratory of the University of Jyvaskyla. The new setup, combining an established B-ToF system and an array of calorimetric low temperature detectors (CLTDs), has been used for the determination of electronic stopping powers of 0.05–1 MeV/u 131Xe ions in carbon, nickel and gold. Thereby advantage of the improved linearity and energy resolution of CLTDs as compared to the previously used ionization detector was taken to reduce energy calibration errors and to increase sensitivity for the energy loss determination, in particular at very low energies. The…

research product

Secondary electron flight times and tracks in the carbon foil time pick-up detector

Carbon foil time pick-up detectors used in the time-of-flight measurements of MeV energy ions have been studied in connection to time-of-flight-energy spectrometer used for heavy ion elastic recoil detection analysis. In experimental coincident TOF-E data characteristic halos are observed around light element isobars, and the origin of these halos were studied. The experimental data indicated that these halos originate from single electron events occurring before the electron multiplication in the microchannel plate. By means of electron trajectory simulations, this halo effect is explained to originate from single electron, emitted from the carbon foil, hitting the non-active area of the m…

research product

Radiation Tolerance Tests of Small-Sized CsI(Tl) Scintillators Coupled to Photodiodes

Radiation tolerance of small-sized CsI (Tl) crystals coupled to silicon photodiodes was studied by using protons. Irradiations up to the fluence of 1012 protons/cm2 were used. Degradation of light output by less than 5% was achieved.

research product

Low Energy Protons at RADEF - Application to Advanced eSRAMs

A low energy proton facility has been developed at RADEF, Jyvskyl, Finland. The proton energy selection, calibration and dosimetry are described. The first experiment with external users was performed using two memory test vehicles fabricated with 28 nm technology. Examples of single event upset measurements in the test vehicles embedded SRAMs (eSRAMs) as a function of proton energy are provided.

research product

A simple timestamping data acquisition system for ToF-ERDA

A new data acquisition system, ToF-DAQ, has been developed for a ToF-ERDA telescope and other ToF-E and ToF-ToF measurement systems. ToF-DAQ combines an analogue electronics front-end to asynchronous time stamped data acquisition by means of a FPGA device. Coincidences are sought solely in software based on the timestamps. Timestamping offers more options for data analysis as coincidence events can be built also in offline analysis. The system utilises a National Instruments R-series FPGA device and a Windows PC as a host computer. Both the FPGA code and the host software were developed using the National Instruments LabVIEW graphical programming environment. Up to eight NIM ADCs can be han…

research product

Improved stability of black silicon detectors using aluminum oxide surface passivation

Publisher Copyright: © 2021 ESA and CNES We have studied how high-energy electron irradiation (12 MeV, total dose 66 krad(Si)) and long term humidity exposure (75%, 75 °C, 500 hours) influence the induced junction black silicon or planar photodiode characteristics. In our case, the induced junction is formed using n-type silicon and atomic-layer deposited aluminum oxide (Al2O3), which contains a large negative fixed charge. We compare the results with corresponding planar pn-junction detectors passivated with either with silicon dioxide (SiO2) or Al2O3. The results show that the induced junction detectors remain stable as their responsivity remains nearly unaffected during the electron beam…

research product

Depth profiling of Al2O3 + TiO2 nanolaminates by means of a time-of-flight energy spectrometer

Atomic layer deposition (ALD) is currently a widespread method to grow conformal thin films with a sub-nm thickness control. By using ALD for nanolaminate oxides, it is possible to fine tune the electrical, optical and mechanical properties of thin films. In this study the elemental depth profiles and surface roughnesses were determined for Al2O3 + TiO2 nanolaminates with nominal single-layer thicknesses of 1, 2, 5, 10 and 20 nm and total thickness between 40 nm and 60 nm. The depth profiles were measured by means of a time-of-flight elastic recoil detection analysis (ToF-ERDA) spectrometer recently installed at the University of Jyväskylä. In TOF-E measurements 63Cu, 35Cl, 12C and 4He ions…

research product