0000000000650452

AUTHOR

Ruben P. De Groote

showing 3 related works from this author

Opportunities for Fundamental Physics Research with Radioactive Molecules

2023

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, mo…

Nuclear Theory (nucl-th)nucl-thNuclear TheoryAtomic Physics (physics.atom-ph)Nuclear Physics - TheoryOther Fields of PhysicsFOS: Physical sciencesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)nucl-exphysics.atom-phNuclear ExperimentPhysics - Atomic Physics
researchProduct

RAPTOR : A new collinear laser ionization spectroscopy and laser-radiofrequency double-resonance experiment at the IGISOL facility

2023

RAPTOR, Resonance ionization spectroscopy And Purification Traps for Optimized spectRoscopy, is a new collinear resonance ionization spectroscopy device constructed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyv\"askyl\"a, Finland. By operating at beam energies of under 10 keV, the footprint of the experiment is reduced compared to more traditional collinear laser spectroscopy beamlines. In addition, RAPTOR is coupled to the JYFLTRAP Penning trap mass spectrometer, opening a window to laser-assisted nuclear-state selective purification, serving not only the mass measurement program, but also supporting post-trap decay spectroscopy experiments. Finally,…

Laser resonance ionizationPhysics - Instrumentation and Detectorscollinear laser spectroscopytutkimuslaitteetFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)nucl-exexotic nucleiNuclear Physics - ExperimentIGISOLlaser resonance ionizationNuclear Experiment (nucl-ex)Detectors and Experimental TechniquesydinfysiikkaNuclear Experimentphysics.ins-detExotic nuclei
researchProduct

High-resolution laser system for the S3-Low Energy Branch

2022

International audience; In this paper we present the first high-resolution laser spectroscopy results obtained at the GISELE laser laboratory of the GANIL-SPIRAL2 facility, in preparation for the first experiments with the S$^3$-Low Energy Branch. Studies of neutron-deficient radioactive isotopes of erbium and tin represent the first physics cases to be studied at S$^3$. The measured isotope-shift and hyperfine structure data are presented for stable isotopes of these elements. The erbium isotopes were studied using the $4f^{12}6s^2$$^3H_6 \rightarrow 4f^{12}(^3 H)6s6p$$J = 5$ atomic transition (415 nm) and the tin isotopes were studied by the $5s^25p^2 (^3P_0) \rightarrow 5s^25p6s (^3P_1)$…

Resonance ionization laser spectroscopyNuclear and High Energy PhysicsIsotope shiftAtomic Physics (physics.atom-ph)FOS: Physical sciencesHyperfine structureNuclear Experiment (nucl-ex)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ground state propertiesNuclear ExperimentInstrumentation[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Physics - Atomic Physics
researchProduct